Haven't done one like this in awhile but I see no one is answering so I gave it a try. I think it's right but let me know if you see something fishy...
(i) |α| = 235.6rad.s / 0.502s = 469 rad/s²
(ii) tang a = α*r = 469rad/s² * 0.12m / 2*11 = 2.56 m/s²
The distance traveled by the wood after the bullet emerges is 0.16 m.
The given parameters;
- <em>mass of the bullet, m = 23 g = 0.023 g</em>
- <em>speed of the bullet, u = 230 m/s</em>
- <em>mass of the wood, m = 2 kg</em>
- <em>final speed of the bullet, v = 170 m/s</em>
- <em>coefficient of friction, μ = 0.15</em>
The final velocity of the wood after the bullet hits is calculated as follows;

The acceleration of the wood is calculated as follows;

The distance traveled by the wood after the bullet emerges is calculated as follows;

Thus, the distance traveled by the wood after the bullet emerges is 0.16 m.
Learn more here:brainly.com/question/15244782
Answer:
I guess the acceleration would be 8 meters a second
Explanation:
I can't think of any other fitting way to put the answer sorry if it's not right