Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Answer:
A capacitor
Explanation:
Because it can store electric energy when disconnected from its charging circuit. Commonly used in electronic devices to maintain power supply while batteries change.
Hope this helps! :)
v
Convert the given temperatures from celsius to kelvin since we are dealing with gas.
To convert to kelvin, add 273.15 to the temperature in celsius.
T1 = 22 + 273.15 = 295.15 k
T2 = 4 + 273.15 = 277.15 k
V1 = 0.5 L
Let's find the final volume (V2).
To solve for V2 apply Charles Law formula below:
Answer:
()=1913.31 N/m^2
Explanation:
given:
=0.85
=90 m/s
γ∞=1.23 kg/m^3
solution:
since outside pressure is atm pressure vaccum can be defined by ()
=√2()/γ∞[-1]
()=1913.31 N/m^2