Answer:
Check below for the explanation
Explanation:
Since it is stated that the ring is dropped from a height, h, through a non uniform magnetic field, two kinds of force will act on the ring, namely:
- A magnetic force (that is non uniform since the field is non uniform)
- Gravitational force
A certain amount of torque is provided by the non uniform magnetic force on the ring while the force gravity pulls it down. Due to the downward pull by the force of gravity on the ring and the torque acting on it as a result of the non uniform magnetic force, the ring begins to rotate.
Answer:
The value of leaking rate in the question is repeated. By searching on the web I could find the correct value wich is 0.002h^2 m^3 /min.
The depth of the water has to be equal to 7.07 m in order to have a stationary volume.
Explanation:
In order to have a stationary water level the flow of water that comes into the tank (0.1 m^3/min) must be equal to the flow of water that goes out of the tank (0.002*h^2 m^3/min), therefore:
0.002*h^2 = 0.1
h^2 = 0.1/0.002
h^2 = 50
h = sqrt(50) = 7.07 m
The equilibrium constant of the reaction at 25⁰c will be 426827.5.
<u />
<u>Equilibrium constant</u> :The equilibrium constant comes from the chemical equilibrium law. For the chemical equilibrium state, at a fixed constant temperature, the ratio of the product of the reaction's multiplication to the concentration of its reactants' multiplication, and each is raised to the power to the corresponding coefficients of the elements in the reaction.
The chemical equilibrium is given by for a general chemical reaction.
a. A+ b. B ⇌ c. C+ d. D,.
Kc =[C]c [D]d/[A]a [B]b.
<u>Gibb's free energy</u> :The second law of thermodynamics can be arranged in such a way that it gives a new expression when a chemical reaction happens at a constant temperature and constant pressure.
G=H-TS
T=25⁰c
G=51.4 x 10³J

k= equilibrium constant ,G=Gibbs free energy ,n= no. of moles ,R=Gas constant ,T=temperature ,Z=compressibility


k=51.4 x 10³ x 8.3 + 8.3 x 25
k=426827.5
To learn equilibrium constant-
<u>brainly.com/question/19669218</u>
#SPJ4
Answer:
The heat energy required is, E = 2200 J
Explanation:
Given,
The mass of paraffin, m = 2 Kg
The energy required to raise the temperature of the paraffin by 200° C = 44000 J
Then the heat energy required to raise the temperature of the paraffin by 10° C is given by,
Since 44000 J raises temperature by 200° C, then
E = 44000 J / 20
= 2200 J
Hence, the energy required to raise the temperature of the paraffin by 10° C is, E = 2200 J