We know that a wave is a disturbance that transfers energy through matter or space There are two main types of waves: Mechanical and Electromagnetic. Water waves are mechanical. A mechanical wave is an oscillation of matter to transfers energy, but you always need a medium (substance such as: solid, liquid, gas, plasma) to transport it. The medium for water waves is, in fact, the water. For example, ripple in water is a surface wave. On the other hand, electromagnetic waves don't need a medium to transport, they can do it through the empty space. Then, this is the major characteristic that makes these two types of waves different.
-- volume = (length)(width)(height)
-- Since the cube is a cube, its three dimensions are all the same number.
Volume = (2.5cm)(2.5cm)(2.5cm)
Volume = 15.625 cubic cm
-- density = (mass) / (volume)
Density = (1129.56g) / (15.625cm^3)
Density = 72.3 g/cm^3
(roughly 3.2 TIMES the density of the most dense naturally occurring substance on Earth)
Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec
Answer:
B
Explanation:
OOf we are doing this stuff atm
So if its faster at the front and slow at the back you can tell that its not slowing down because less of a force is there however at the front there is more of a force. Friction is low which means that its not makimg much contact so no sudden change of forces thats also why its B
Answer:
The value is
Explanation:
From the question we are told that
The wavelength is 
The velocity is 
The mass of electron is 
Generally the energy of the incident light is mathematically represented as

Here c is the speed of light with value
h is the Planck constant with value 
So

=> 
Generally the kinetic energy is mathematically represented as

=> 
=> 
Generally the ionization energy is mathematically represented as

=>