1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
7

HELP PLEASE 60 POINTS HAVE A GREAT REST OF YOUR DAY PEOPLE :>

Physics
2 answers:
pickupchik [31]3 years ago
6 0

Answer:

Northstar & North Pole

Explanation:

yyggggggggggggggg

igor_vitrenko [27]3 years ago
4 0

Answer:

The sun and the stars

Explanation:

I hope this helps!

You might be interested in
What is the velocity of Car B after collision?
zubka84 [21]

Answer:

30m/s

Explanation:

m1v1=m2v2

12 * 10=4* v2

120/4 =v2

V2=30m/s

7 0
2 years ago
An object on the surface of the earth has a force of gravity of 682 N. What is the objects mass?
valina [46]
The object's mass is around 69.592 kg

F=mg
5 0
3 years ago
What are some examples of pressure
aniked [119]
Squeezing a ball is one
3 0
3 years ago
HURRY! PLEASE HELP!!!!<br><br><br> 3. What methods are you using to test this (or each) hypothesis?
Pie

Answer:

How to Test Hypotheses

State the hypotheses. Every hypothesis test requires the analyst to state a null hypothesis and an alternative hypothesis. ...

Formulate an analysis plan. The analysis plan describes how to use sample data to accept or reject the null hypothesis. ...

Analyze sample data. ...

Interpret the results.

4 0
3 years ago
A 4.87-kg ball of clay is thrown downward from a height of 3.21 m with a speed of 5.21 m/s onto a spring with k = 1570 N/m. The
Yuki888 [10]

Answer:

Approximately 0.560\; {\rm m}, assuming that:

  • the height of 3.21\; {\rm m} refers to the distance between the clay and the top of the uncompressed spring.
  • air resistance on the clay sphere is negligible,
  • the gravitational field strength is g = 9.81\; {\rm m\cdot s^{-2}}, and
  • the clay sphere did not deform.

Explanation:

Notations:

  • Let k denote the spring constant of the spring.
  • Let m denote the mass of the clay sphere.
  • Let v denote the initial speed of the spring.
  • Let g denote the gravitational field strength.
  • Let h denote the initial vertical distance between the clay and the top of the uncompressed spring.

Let x denote the maximum compression of the spring- the only unknown quantity in this question.

After being compressed by a displacement of x, the elastic potential energy \text{PE}_{\text{spring}} in this spring would be:

\displaystyle \text{PE}_{\text{spring}} = \frac{1}{2}\, k\, x^{2}.

The initial kinetic energy \text{KE} of the clay sphere was:

\displaystyle \text{KE} = \frac{1}{2}\, m \, v^{2}.

When the spring is at the maximum compression:

  • The clay sphere would be right on top of the spring.
  • The top of the spring would be below the original position (when the spring was uncompressed) by x.
  • The initial position of the clay sphere, however, is above the original position of the top of the spring by h = 3.21\; {\rm m}.

Thus, the initial position of the clay sphere (h = 3.21\; {\rm m} above the top of the uncompressed spring) would be above the max-compression position of the clay sphere by (h + x).

The gravitational potential energy involved would be:

\text{GPE} = m\, g\, (h + x).

No mechanical energy would be lost under the assumptions listed above. Thus:

\text{PE}_\text{spring} = \text{KE} + \text{GPE}.

\displaystyle \frac{1}{2}\, k\, x^{2} = \frac{1}{2}\, m\, v^{2} + m\, g\, (h + x).

Rearrange this equation to obtain a quadratic equation about the only unknown, x:

\displaystyle \frac{1}{2}\, k\, x^{2} - m\, g\, x - \left[\left(\frac{1}{2}\, m\, v^{2}\right)+ (m\, g\, h)\right] = 0.

Substitute in k = 1570\; {\rm N \cdot m^{-1}}, m = 4.87\; {\rm kg}, v = 5.21\; {\rm m\cdot s^{-1}}, g = 9.81\; {\rm m \cdot s^{-2}}, and h = 3.21\; {\rm m}. Let the unit of x be meters.

785\, x^{2} - 47.775\, x - 219.453 \approx 0 (Rounded. The unit of both sides of this equation is joules.)

Solve using the quadratic formula given that x \ge 0:

\begin{aligned}x &\approx \frac{-(-47.775) + \sqrt{(-47.775)^{2} - 4 \times 785 \times (-219.453)}}{2 \times 785} \\ &\approx 0.560\; {\rm m}\end{aligned}.

(The other root is negative and is thus invalid.)

Hence, the maximum compression of this spring would be approximately 0.560\; {\rm m}.

5 0
2 years ago
Other questions:
  • Select the answer choices that describe where plasmas can be found.
    8·2 answers
  • Vector A with arrow has a magnitude of 35 units and points in the positive y direction. When vector B with arrow is added to A w
    10·1 answer
  • A 24 volt doorbell carries a current of 1/2 ampere. Calculate the resistance in the bell
    14·1 answer
  • A 0.300 kg potato is tied to a string with length 2.30 m , and the other end of the string is tied to a rigid support. The potat
    14·1 answer
  • on june 20, 1969, two american astronauts named Buss Aldrin and Neil Armstrong became the first humans to contact the surface of
    14·1 answer
  • Which type of radioactive decay results in no change in mass number and atomic number for the starting nucleus?
    8·1 answer
  • Two point charges +3 micro coulomb and +8 micro coulomb repel each other with a force of 40N . If a charge of -5 micro coulomb i
    13·1 answer
  • A car has a mass of 8000 kg and a kinetic energy of 24,000 J. What is its
    10·2 answers
  • . A 5 kg turkey and a 3.5 kg turkey are suspended on opposite sides of a single pulley.
    9·1 answer
  • A 250 g blob of clay moves with a speed of 15 m/s towards a 400 g cart that is initially at rest. a). What is the momentum of th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!