Explanation:
Given that,
Initial speed of the airfield, u = 0
Final speed, v = 27.8 m/s
Acceleration of the airfield, 
Length of the runway, d = 150 m
Let v' is the speed of the airplane to reach the required speed for takeoff. Finding v' using third equation of motion as :

This speed is not enough as the airfield must reach a speed before takeoff of at least 27.8 m/s. Now, the required length of the runways is :

So, the minimum length of the runways is 193.21 meters.
Answer:
17.72° or 72.28°
Explanation:
u = 6.5 m/s
R = 2.5 m
Let the angle of projection is θ.
Use the formula for the horizontal range


Sin 2θ = 0.58
2θ = 35.5°
θ = 17.72°
As we know that the range is same for the two angles which are complementary to each other.
So, the other angle is 90° - 17.72° = 72.28°
Thus, the two angles of projection are 17.72° or 72.28°.
Moving fan has rotational kinetic energy
Non moving fan has no energy since it is in rest
1) In a circular motion, the angular displacement

is given by

where S is the arc length and r is the radius. The problem says that the truck drove for 2600 m, so this corresponds to the total arc length covered by the tire:

. Using the information about the radius,

, we find the total angular displacement:

2) If we put larger tires, with radius

, the angular displacement will be smaller. We can see this by using the same formula. In fact, this time we have:
Answer:
a) 4.04*10^-12m
b) 0.0209nm
c) 0.253MeV
Explanation:
The formula for Compton's scattering is given by:

where h is the Planck's constant, m is the mass of the electron and c is the speed of light.
a) by replacing in the formula you obtain the Compton shift:

b) The change in photon energy is given by:

c) The electron Compton wavelength is 2.43 × 10-12 m. Hence you can use the Broglie's relation to compute the momentum of the electron and then the kinetic energy.

