When naming an ionic compound, write the name of the cation, which is the metal first. Then, write the name of the anion, which is the nonmetal. However, you remove the last 2-3 letters and replace suffixes.
1. RbF --> Rubidium Fluoride
Change fluorine to fluoride
2. CuO --> Copper (II) Oxide
Change oxygen to oxide. Oxide has a charge of -2. Since no subscripts are written, it means they have the same opposite charge. So, we use Copper (II).
<span>3. (NH</span>₄<span>)</span>₂<span>C</span>₂<span>O</span>₄ ---> Ammonium Oxalate
NH₄ is ammonia, but we change it to ammonium for polyatomic ions.
75.0 mL in liters:
75.0 / 1000 => 0.075 L
1 mole -------------------- 22.4 L ( at STP)
( moles Hg) ------------- 0.075 L
moles Hg = 0.075 x 1 / 22.4
moles = 0.075 / 22.4
= 0.00334 moles of Hg
Hg => 200.59 u
1 mole Hg ----------------- 200.59 g
<span>0.00334 moles Hg ----- ( mass Hg )
</span>
mass Hg = 200.59 x 0.00334 / 1
mass Hg = 0.6699 / 1
= 0.6699 g of Hg
Answer:
They are all alkali earth metals.
Explanation:
Their valence shell each has 2 electrons. Also, they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure. They form alkaline solutions, hydroxides, when reacting with water and their oxides are found in the earth’s crust.
D. 1,1,2,1
<h3>Further explanation </h3>
Equalization of chemical reactions can be done using variables. Steps in equalizing the reaction equation:
- 1. gives a coefficient on substances involved in the equation of reaction such as a, b, or c, etc.
- 2. make an equation based on the similarity of the number of atoms where the number of atoms = coefficient × index (subscript) between reactant and product
- 3. Select the coefficient of the substance with the most complex chemical formula equal to 1
Reaction(unbalanced)
Zn+K₂CrO₄ ⇒ K + ZnCrO₄
Give coefficient
aZn+K₂CrO₄ ⇒ bK + cZnCrO₄
Zn, left=a, right=c⇒a=c
K, left=2, right=b⇒b=2
Cr, left=1, right=c⇒c=1⇒a=1
O,left=4,right=4c⇒4c=4⇒c=1
Reaction(balanced0
Zn+K₂CrO₄ ⇒ 2K + ZnCrO₄
Answer:
6.78 × 10⁻³ L
Explanation:
Step 1: Write the balanced equation
Mg₃N₂(s) + 3 H₂O(g) ⇒ 3 MgO(s) + 2 NH₃(g)
Step 2: Calculate the moles corresponding to 10.2 mL (0.0102 L) of H₂O(g)
At STP, 1 mole of H₂O(g) has a volume of 22.4 L.
0.0102 L × 1 mol/22.4 L = 4.55 × 10⁻⁴ mol
Step 3: Calculate the moles of NH₃(g) formed from 4.55 × 10⁻⁴ moles of H₂O(g)
The molar ratio of H₂O to NH₃ is 3:2. The moles of NH₃ produced are 2/3 × 4.55 × 10⁻⁴ mol = 3.03 × 10⁻⁴ mol.
Step 4: Calculate the volume corresponding to 3.03 × 10⁻⁴ moles of NH₃
At STP, 1 mole of NH₃(g) has a volume of 22.4 L.
3.03 × 10⁻⁴ mol × 22.4 L/mol = 6.78 × 10⁻³ L