Answer:
thermal energy is heat energy it is used for man kitchen appliances and also in nature from the sun for photosynthesys
Explanation:
Answer: the process of photosynthesis is commonly written as: 6CO2 + 6H2O → C6H12O6 + 6O2. This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products.
Explanation:
These two factors are:
*radiation coming into the Earth's atmosphere
*radiation going out the Earth's atmosphere
These two factors could be lumped into one natural phenomenon called the greenhouse effect. The Earth's atmosphere is a very unique characteristic in the solar system because it makes the planet livable. Without the atmosphere's work, the day would be too hot and the night would be too cold. The trapping of radiation, hence heat, keeps the overall temperature of the Earth.
Answer:

Explanation:
Hello!
In this case, we can divide the problem in two steps:
1. Dilution to 278 mL: here, the initial concentration and volume are 1.20 M and 52.0 mL respectively, and a final volume of 278 mL, it means that the moles remain the same so we can write:

So we solve for C2:

2. Now, since 111 mL of water is added, we compute the final volume, V3:

So, the final concentration of the 139 mL portion is:

Best regards!
Answer:
It will take 3.3 s for [NOCl] to decrease to 0.042 M.
Explanation:
Integrated rate law for this second order reaction-
![\frac{1}{[NOCl]}=kt+\frac{1}{[NOCl]_{0}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BNOCl%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BNOCl%5D_%7B0%7D%7D)
where, [NOCl] is concentration of NOCl after "t" time,
is initial concentration of NOCl and k is rate constant.
Here,
= 0.076 M, k = 3.2
and [NOCl] = 0.042 M
So, ![\frac{1}{0.042M}=[3.2M^{-1}s^{-1}\times t]+\frac{1}{0.076M}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B0.042M%7D%3D%5B3.2M%5E%7B-1%7Ds%5E%7B-1%7D%5Ctimes%20t%5D%2B%5Cfrac%7B1%7D%7B0.076M%7D)
or, t = 3.3 s
So, it will take 3.3 s for [NOCl] to decrease to 0.042 M.