Answer:
a) a = 3.72 m / s², b) a = -18.75 m / s²
Explanation:
a) Let's use kinematics to find the acceleration before the collision
v = v₀ + at
as part of rest the v₀ = 0
a = v / t
Let's reduce the magnitudes to the SI system
v = 115 km / h (1000 m / 1km) (1h / 3600s)
v = 31.94 m / s
v₂ = 60 km / h = 16.66 m / s
l
et's calculate
a = 31.94 / 8.58
a = 3.72 m / s²
b) For the operational average during the collision let's use the relationship between momentum and momentum
I = Δp
F Δt = m v_f - m v₀
F =
F = m [16.66 - 31.94] / 0.815
F = m (-18.75)
Having the force let's use Newton's second law
F = m a
-18.75 m = m a
a = -18.75 m / s²
Explanation:
Crust...molten
a. Oceanic, iron
b. Continental, silicates
c. less
3. Mantle, Denser
a. Lithosphere
b. Asthenosphere
4. Core
a. elements, rocks
b. liquid, magnetic
(I guess the liquid should come after the is)
Couldn't answer all but wanted to help
Answer: The radial acceleration of a point on the rim in two ways is 13.20 m/s^2
Explanation: Please see the attachments below
Answer:
b) The downward force of gravity
Explanation:
The gravity force has the biggest influence on the deceleration of the ball because no matter how much force you applied on the ball, it will eventually go down again, according to newton's second law:
right after you throw the ball, only the force exerted by the gravity will affect the ball (neglecting air resistance):
so the object will eventually be going down again.
1 Kilojoule [kJ] = 737.562 149 277 27 Foot pound force [ftlbf]