Answer : The average speed of the sprinter is, 34.95 Km/hr
Solution :
Average velocity : It is defined as the distance traveled by the time taken.
Formula used for average velocity :

where,
= average velocity
d = distance traveled = 200 m
t = time taken = 20.6 s
Now put all the given values in the above formula, we get the average velocity of the sprinter.

conversion :
(1 Km = 1000m)
(1 hr = 3600 s)
Therefore, the average speed of the sprinter is, 34.95 Km/hr
Answer:
E = k Q / [d(d+L)]
Explanation:
As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field
E = k ∫ dq/ r² r^
"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element and "r^" is a unit ventor from the load element to the point.
Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant
λ = Q / L
If we derive from the length we have
λ = dq/dx ⇒ dq = L dx
We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge
dE = k dq / x²2
dE = k λ dx / x²
Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider
E = k 
We take out the constant magnitudes and perform the integral
E = k λ (-1/x)
Evaluating
E = k λ [ 1/d - 1/ (d+L)]
Using λ = Q/L
E = k Q/L [ 1/d - 1/ (d+L)]
let's use a bit of arithmetic to simplify the expression
[ 1/d - 1/ (d+L)] = L /[d(d+L)]
The final result is
E = k Q / [d(d+L)]
Answer:
C. 98 J
Explanation:
The appropriate formula is ...
PE = mgh . . . . . m is mass; below, m is meters
PE = (5 kg)(9.8 m/s^2)(2 m) = 98 kg·m^2/s^2
PE = 98 J
Answer:
527 Hz
Solution:
As per the question:
Beat frequency of the player, 
Frequency of the tuning fork, f = 523 Hz
Now,
The initial frequency can be calculated as:


when

when

But we know that as the length of the flute increases the frequency decreases
Hence, the initial frequency must be 527 Hz
<span>Answer:
Assuming that I understand the geometry correctly, the combine package-rocket will move off the cliff with only a horizontal velocity component. The package will then fall under gravity traversing the height of the cliff (h) in a time T given by
h = 0.5*g*T^2
However, the speed of the package-rocket system must be sufficient to cross the river in that time
v2 = L/T
Conservation of momentum says that
m1*v1 = (m1 + m2)*v2
where m1 is the mass of the rocket, v1 is the speed of the rocket, m2 is the mass of the package, and v2 is the speed of the package-rocket system.
Expressing v2 in terms of v1
v2 = m1*v1/(m1 + m2)
and then expressing the time in terms of v1
T = (m1 + m2)*L/(m1*v1)
substituting T in the first expression
h = 0.5*g*(m1 + m2)^2*L^2/(m1*v1)^2
solving for v1, the speed before impact is given by
v1 = sqrt(0.5*g/h)*(m1 + m2)*L/m1</span>