Heat lost or gained, H = mc(θ₂ - θ₁)
Where m = mass, c = Specific heat capacity, θ₂= final temperature, θ₁ = initial temperature
m = 200g, c = 0.444 J/g°C, θ₁ = 22 °C (Since it was cooled).
H = 6.9 kj = 6.9 *1000J = 6900 J
6900 = 200*0.444* (θ₂ - 22)
6900/(200*0.444) = θ₂ - 22
77.70 = θ₂ - 22
θ₂ - 22 = 77.7
θ₂ = 77.7 + 22 = 99.7
So initial temperature before cooling ≈ 100°C . Option C.
Answer:
156.67 m/s
0.45676 times the speed of sound
Explanation:
Distance from the ground = 23.5 km = 23500 m
Time taken by the blast waves to reach the ground = 
Spedd of the wave would be

The velocity of the blast wave is 156.67 m/s
v = Velocity of sound = 343 m/s

The blast wave is 0.45676 times the speed of sound
The action or process of magnifying something or being magnified, especially visually. Hope this helped
When a charged object is brought near to but does not touch a neutral object, it causes the side of the neutral object that the charged object is near to become the other charge. It causes charge migration within the neutral object so the two charges (positive and negative) move to opposite sides of the object. Because the two objects do not touch, they do not repel each other, but rather have a slight attraction because of charge migration. If the two object were to touch then they would repel.