Answer:
lThe effect of the attraction of the earth on a bigger stone can be observed more than the effect of attraction of the earth on a smaller one. hence it is difficult to lift a large stone than the smaller one on the earth surface.
Hello!
This is an example of an inelastic collision, where the two objects "stick" to each other after their collision. (The Goalkeeper CATCHES the puck).
We can write out the conservation of momentum formula:
m1vi + m2vi = m1vf + m2vf
Let:
m1 = mass of puck
m2 = mass of the goalkeeper
We know that the initial velocity of the goalkeeper is 0, so:
m1vi + m2(0) = m1vf + m2vf
m1vi = m1vf + m2vf
The final velocities will be the same, so:
m1vi = (m1 + m2)vf
Plug in the given values:
(0.16)(40)/ (0.16 + 120) = vf ≈ 0.0533 m/s
Using the equation for momentum:
p = mv
The object with the LARGER mass will have the greater momentum. Thus, the Goalkeeper has the largest momentum as p = mv; a greater mass correlates to a greater momentum since the velocity is the same between the two objects. The puck would have a momentum of p = (.16)(0.0533) = 0.008528 kgm/s, whereas the goalkeeper would have a momentum of
p = (120)(0.0533) = 6.396 kgm/s.
Answer:
a. 9.8 m/s2.
Explanation:
The acceleration depends on the force of gravity. It's independent of the velocity of the ball.
Answer:
1.15 rad/s²
Explanation:
given,
angular speed of turntable = 45 rpm
=
=
time, t = 4.10 s
initial angular speed = 0 rad/s
angular acceleration.



Hence, the angular acceleration of the turntable is 1.15 rad/s²