(a) The required magnitude of the electric field when the point charge is an electron is 5.57 x 10⁻¹¹ N/C.
(b) The required magnitude of the electric field when the point charge is an proton is 1.02 x 10⁻⁷ N/C.
<h3>
Magnitude of electric field </h3>
The magnitude of electric field is given by the following equation.
F = qE
But F = mg
mg = qE
E = mg/q
where;
- E is the electric field
- m is mass of the particle
- g is acceleration due to gravity
- q is charge of the particle
<h3>For an electron</h3>
E = (9.11 x 10⁻³¹ x 9.8)/(1.602 x 10⁻¹⁹)
E = 5.57 x 10⁻¹¹ N/C
<h3>For proton</h3>
E = (1.67 x 10⁻²⁷ x 9.8)/(1.602 x 10⁻¹⁹)
E = 1.02 x 10⁻⁷ N/C
Thus, the required vertical electric field is greater when the charge is proton.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
A negative ion is a atom that has an extra electron, but the same # of protons
Answer:
The only difference between a planet and a dwarf planet is the area surrounding each celestial body. A dwarf planet has not cleared the area around its orbit, while a planet has.
Explanation:
the three criteria of the IAU for a full-sized planet are: It is in orbit around the Sun. It has sufficient mass to assume hydrostatic equilibrium (a nearly round shape). It has "cleared the neighborhood" around its orbit .
Bulbs c and b would still be screwed in if they were in to begin with and bulbs A, D, and E. would be unscrewed