Answer:
The correct answer is:
doesn't change (d)
Explanation:
The total energy in a system is the sum of Kinetic and Potential energies in a system, assuming that energy is not lost to an external procedure. Now, let us define what potential and kinetic energies are:
Potential Energy: this is energy at rest or stored energy
Kinetic Energy: this is energy in motion
In a simple harmonic motion of a mass-spring system, there is no dissipative force, hence the total energy is equal to the potential and kinetic energies. The total energy is not changed rather, it varies between potential and kinetic energies depending on the point at which the mass is. The kinetic energy is greatest at the point of lowest amplitude (highest velocity) and lowest at the point of greatest amplitude (lowest velocity), while potential energy is greatest at the point of highest amplitude (lowest velocity) and lowest at the point of smallest amplitude ( highest velocity). However, at every point, the sum of kinetic and potential energies equals total energy.
A. All living things and objects
In graphing enthalpy entropy and state changes the two
variables that are included are amount of heat added and pressure. The answer
is letter D. The rest of the choices do not answer the question above.
Answer:
v = 72.54 m/s
Explanation:
We have,
Length of a guitar string is 0.62 m
Frequency of a guitar string is 234 Hz
For guitar string,

The velocity of the wave in the string is given by :

So, the velocity of the waves in the string is 72.54 m/s.
Answer: Increase in wave frequency
Explanation:
When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>
In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.