Answer:
a) # lap = 301.59 rad
, b) L = 90.48 m
Explanation:
a) Let's use a direct proportions rule (rule of three). If one turn of the wire covers 0.05 cm, how many turns do you need to cover 24 cm
# turns = 1 turn (24 cm / 0.5 cm)
# laps = 48 laps
Let's reduce to radians
# laps = 48 laps (2 round / 1 round)
# lap = 301.59 rad
b) Each lap gives a length equal to the length of the circle
L₀ = 2π R
L = # turns L₀
L = # turns 2π R
L = 48 2π 30
L = 9047.79 cm
L = 90.48 m
<h2>
Answer:</h2>
Motor
<h2>
Explanation:</h2>
A motor is a machine that converts electrical energy into mechanical energy. In motors, electric energy is converted into mechanic energy when a magnetic torque acts on a conductor that carries a current. There are different types of motors like DC and AC motors. The moving part of a motor is called the rotor while the stationary part is called stator
Answer:
Option C
Crimp terminals
Explanation:
It's possible to crimp terminals using a multipurpose wiring tool. Since the tool selected for use during crimping also depends on the volume of work, the multipurpose wiring tool is recommended for use when the volume is small to medium. Basically, crimping tools are sized according to the wire gauge that they can fit. Since multipurpose has different sizes, that's why it's used for crimping tools.
Answer:

Explanation:
For this exercise we must use the principle of conservation of energy
starting point. The proton very far from the nucleus
Em₀ = K = ½ m v²
final point. The point where the proton is stopped (v = 0)
Em_f = U = q V
where the potential is
V = k Ze / r²
Let us consider that all the charge of the nucleus is in the center, therefore r is the distance from this point to the proton that is approaching
Energy is conserved
Em₀ = Em_f
½ m v² = e (
)
with this expression we can find the closest approach distance (r)
Answer:
The speed of the heavier fragment is 0.335c.
Explanation:
Given that,
Mass of the lighter fragment 
Mass of the heavier fragment 
Speed of lighter fragment = 0.893c
We need to calculate the speed of the heavier fragment
Let v is the speed of the second fragment after decay
Using conservation of relativistic momentum













Hence, The speed of the heavier fragment is 0.335c.