1) Compund Ir (x) O(y)
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
Answer: The concentration of
in the final solution is 0.006688 M and number of moles are 0.00006688
Explanation:
According to the neutralization law,

where,
= molarity of stock solution = 6.847 M
= volume of stock solution = 25.00 ml
= molarity of ist dilute solution = ?
= volume of first dilute solution = 100.0 ml


2) on second dilution;


3) on third dilution


4) on fourth dilution


5) on fifth dilution


Thus the concentration of
in the final solution is 0.006688 M
moles of
= 
Answer:
Mark me as brainliest pls
Explanation:
similarities: Structurally, plant and animal cells are very similar because they are both eukaryotic cells. They both contain membrane-bound organelles such as the nucleus, mitochondria, endoplasmic reticulum, golgi apparatus, lysosomes, and peroxisomes. Both also contain similar membranes, cytosol, and cytoskeletal element
differences: A plant cell contains a large, singular vacuole that is used for storage and maintaining the shape of the cell. In contrast, animal cells have many, smaller vacuoles. Plant cells have a cell wall, as well as a cell membrane. ... Animal cells simply have a cell membrane, but no cell wall.
Mitochondria are tiny organelles inside cells that are involved in releasing energy from food. This process is known as cellular respiration. It is for this reason that mitochondria are often referred to as the powerhouses of the cell.
When the breakdown products from the digestion of food find their way into the cell, a series of chemical reactions occur in the cytoplasm. This allows some of the energy locked up in these products to be released and incorporated into the universal energy supplier in cells known as ATP (adenosine triphosphate).
Answer:
Yes, you can
Explanation:
When you climb Mount Everest, you need lots of energy. The higher you climb, the more your appetite goes down. You will need as much energy as you can get.