Answer:
The elements are in the same column/group IIA.
See the explanation below, please.
Explanation:
The elements Calcium, Strontium, Beryllium, Magnesium, Barium and Radio, belong to the group of alkaline earth metals located in group IIA of the periodic table, they require 2 electrons to complete their octet (they have 2 valence electrons). reagents than alkali metals.
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.139M 0M 0M
Δ[] -x +x +x
[]f 0.139-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .139 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.139-x ≈ 0.139
4.5x10^-4 = x^2/0.139
Then, we solve for x by first multiplying both sides by 0.139 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.007M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.007M/0.139M = .0503 or
≈5.03% dissociation.
Porque la temperatura de la agua es neutral
<h3>
Answer:</h3>
5.6 L
<h3>
Explanation:</h3>
We are given;
- Initial volume, V1 = 3.5 L
- Initial pressure, P1 = 0.8 atm
- Final pressure, P2 = 0.5 atm
We are required to calculate the final volume;
- According to Boyle's law, the volume of a fixed mass of a gas and the pressure are inversely proportional at a constant temperature.
- That is; P α 1/V
- Mathematically, P=k/V
- At two different pressure and volume;
P1V1 = P2V2
In this case;
Rearranging the formula;
V2 = P1V1 ÷ P2
= (0.8 atm × 3.5 L) ÷ 0.5 atm
= 5.6 L
Therefore, the resulting volume is 5.6 L