Like hydrogen fluoride (HF), water (H2O) is a polar covalent molecule.
The electron pair in a non-polar covalent bond is shared equally by the two bonded atoms, but in a polar covalent bond, the electron pair is shared unequally by the two bonded atoms. Differences in electronegativity are what lead to polar bonding.
The entire transfer of valence electron(s) between atoms is referred to as an ionic bond. It is a kind of chemical connection that produces two ions with opposing charges. In ionic bonding, the nonmetal takes the lost electrons to form a negatively charged anion while the metal loses them to become a positively charged cation.
Learn more about Polar covalent bond here-
brainly.com/question/1646189
#SPJ4
Silver (Ag) is likely to be less reactive
Geologists have a rule of thumb: when molten rock cools and solidifies, crystals of compounds with the smallest lattice energies appear at the bottom of the mass because of high power of solubility.
<h3>What is lattice energy? </h3>
The lattice energy is defined as the energy change upon the formation of one mole of crystalline ionic compound from its same constituent ions, that are assumed to be initially in the state of gases. It is also defined as measure of the cohesive forces which bind ionic solids together.
As the lattice energy of the ionic compound increase the solubility of that particular compound decrease. Hence compound which have low lattice energy are more soluble than compound having high lattice energy. When molten rocks cools and solidified, the compound having smallest lattice energy become more soluble than crystals of compound which have large lattice energy. Therefore, crystal of compound with the smallest lattice energy start appearing at the bottom of the mass.
Thus, we concluded that due to high solubility power of compound with low lattice energy appear at the bottom of the mass.
learn more about lattice energy:
brainly.com/question/13169815
#SPJ4
Answer:
34,6g of (NH₄)₂SO₄
Explanation:
The boiling-point elevation describes the phenomenon in which the boiling point of a liquid increases with the addition of a compound. The formula is:
ΔT = kb×m
Where ΔT is Tsolution - T solvent; kb is ebullioscopic constant and m is molality of ions in solution.
For the problem:
ΔT = 109,7°C-108,3°C = 1,4°C
kb = 1.07 °C kg/mol
Solving:
m = 1,31 mol/kg
As mass of X = 600g = 0,600kg:
1,31mol/kg×0,600kg = 0,785 moles of ions. As (NH₄)₂SO₄ has three ions:
0,785 moles of ions×
= 0,262 moles of (NH₄)₂SO₄
As molar mass of (NH₄)₂SO₄ is 132,14g/mol:
0,262 moles of (NH₄)₂SO₄×
= <em>34,6g of (NH₄)₂SO₄</em>
<em></em>
I hope it helps!