Answer: 1.3617×10^-14 N
Explanation: The formulae that relates electric field intensity, magnitude of charge and force is given by the formulae below.
F = Eq
Where F = electric force =?
E = strength of electric field = 88000 N/c
q = magnitude of proton charge = 1.602×10^-19 c
By substituting the parameters, we have that
F = 88000 × 1.602×10^-19
F = 13.617×10^-15
F = 1.3617×10^-14 N
For this case, in the next item we have gravitational potential energy:
An apple in a tree.
Suppose we define our reference system at the floor level.
Suppose the apple is at a height h from the floor and has mass m.
The gravitational potential energy of the apple is given by:
U = mgh
Where,
m: apple mass
h: height of the apple with respect to the floor
g: acceleration due to gravity
Answer:
C) an apple on a tree
Answer:
The correct answer is a. Both are the same
Explanation:
For this calculation we must use the gravitational attraction equation
F = G m M / r²
Where M will use the mass of the Earth, m the mass of the girl and r is the distance of the girl to the center of the earth that we consider spherical
To better visualize things, let's repair the equation a little
F = m (G M / r²)
The amount in parentheses called acceleration of gravity, entered the force called peos
g = G M / r²
F = W
W = m g
When analyzing this equation we see that the variation in the weight of the girl depends on the distance, which is the radius of the earth plus the height where the girl is
r = Re + h
Re = 6.37 10⁶ m
r² = (Re + h)²
r² = Re² (1 + h / Re)²
Let's replace
W = m (GM / Re²) (1+ h / Re)⁻²
W = m g (1+ h / Re)⁻²
This is the exact expression for weight change with height, but let's look at its values for some reasonable heights h = 6300 m (very high mountain)
h / Re = 10
⁻³
(1+ h / Re)⁻² = 0.999⁻²
Therefore, the negligible weight reduction, therefore, for practical purposes the weight does not change with the height of the mountain on Earth
The correct answer is a