1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
3 years ago
9

The 100-lb platform rolls without slipping along the 10 degree incline on two pairs of 16-in.diameter wheels. Each pair of wheel

s with attached axle weighs 25 lb and has a centroid radius of gyration of 5.5 in. The platform has an initial speed of 3 ft/ sec down the incline when a tension T is applied through a cables attached to the platform. If the platform acquires a speed of 3ft/sec up the incline after the tension has been applied for 8 seconds, what is the average value of the tension in the cable?

Engineering
1 answer:
Tcecarenko [31]3 years ago
6 0

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

You might be interested in
A cooling system load is 96,000 BTUh sensible. How much chilled air is required to satisfy the load if the system is designed fo
Natalija [7]

Answer:

For 20^{\circ} - 5.556 lb/s

For 15^{\circ} - 7.4047 lb/s

Solution:

As per the question:

System Load = 96000 Btuh

Temperature, T = 20^{\circ}

Temperature rise, T' = 15^{\circ}

Now,

The system load is taken to be at constant pressure, then:

Specific heat of air, C_{p} = 0.24 btu/lb ^{\circ}F

Now, for a rise of 20^{\circ} in temeprature:

\dot{m}C_{p}\Delta T = 96000

\dot{m} = \frac{96000}{C_{p}\Delta T} = \frac{96000}{0.24\times 20} = 20000 lb/h = \frac{20000}{3600} = 5.556 lb/s

Now, for 15^{\circ}:

\dot{m}C_{p}\Delta T = 96000

\dot{m} = \frac{96000}{C_{p}\Delta T} = \frac{96000}{0.24\times 15} = 26666.667 lb/h = \frac{26666.667}{3600} = 7.4074 lb/s

4 0
3 years ago
Find the rate of heat transfer through a 6 mm thick glass window with a cross-sectional area of 0.8 m2 if the inside temperature
kiruha [24]

Answer:

6.9

Explanation:

I had the same question lol your welcomr if itd not right in sorry

3 0
2 years ago
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
3 years ago
How to study thermodynamics?​
expeople1 [14]

It is study of the relationships between heat, temprature, work and energy

7 0
3 years ago
Read 2 more answers
List all possible fracture mechanisms under which the unidirectional composites fail. Briefly explain and describe the related m
professor190 [17]

Answer:

Ususushehehehhuuiiïbbb

Explanation:

Yyshehshehshshsheyysysueueue

7 0
2 years ago
Other questions:
  • How fast is a 2012 nissan sentra<br>speed and acceleration ​
    15·1 answer
  • The future of work is characterised by choose all that apply
    11·1 answer
  • . Carly's Catering provides meals for parties and special events. In Chapter 2, you wrote an application that prompts the user f
    10·1 answer
  • A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.0 mm (0.20 in
    13·1 answer
  • Adore.aaliyah_ add me loves !
    7·1 answer
  • Air,in a piston cylinder assembly, is initially at 300 K and 200 kPa.It is then heated at constant pressure to 600 K. Determine
    12·2 answers
  • or a metal pipe used to pump tomato paste, the overall heat- transfer coefficient based on internal area is 2 W/(m2 K). The insi
    14·1 answer
  • Problem 89:A given load is driven by a 480 V six-pole 150 hp three-phase synchronous motor with the following load and motor dat
    11·1 answer
  • What is software certification? Discuss its importance in the changing scenario of software industry. ​
    15·1 answer
  • Hole filling fasteners (for example, MS20470 rivets) should not be used in composite structures primarily because of the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!