1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11Alexandr11 [23.1K]
3 years ago
10

Determine the time required for a car to travel 1 km along a road if the car starts from rest, reaches a maximum speed at some i

ntermediate point, and then stops at the end of the road. The car can accelerate at 1.5 m/s2 and decelerate at 2 m/s2. ​

Engineering
1 answer:
lbvjy [14]3 years ago
8 0

Total time taken by car to travel 1 km distance is 48.2 seconds

Explanation:

Given data-

Total distance- 1 km= 1000m

Car starts from rest- Hence the initial velocity (u)= 0 m/s

Then, car accelerates at 1.5 m/s ²

Let us suppose with these acceleration car reaches the max speed of V

Car then decelerates at rate of 2 m/s ²

Finally, car comes to rest

We need to consider the question in two parts

Part 1= when car starts from rest and reaches the value V in the time tₐ at the distance s₁.

Part 2= When car starts from V and finally stops at 1 km mark in the time tₙ in distance 1000-s₁.

For the part 1

We know the formula  

v= u + a*tₐ

where v= final velocity

u- initial velocity

a= acceleration

tₐ= time period

At the starting u= 0  

Hence the equation reduces to V=0+1.5tₐ

Or V= 1.5tₐ                             Eq 1

We also know that s= u*tₐ+ ¹/₂*a*tₐ²

Where s₁= distance covered  (other symbols same meaning)

Since u=0   (u*tₐ=0)

s₁ = ¹/₂*1.5*tₐ²

s₁= ½* 1.5*tₐ²                    -------------Eq 2

Now considering Part 2

Here the case is deceleration hence the equation would change (symbols same)

v= V-a*tₙ     final velocity(v)=0 (car stops finally) & initial velocity (part 2)= V

V= a*tₙ

V=2*tₙ                                 -----------Eq 3

Similarly  

1000-s₁= V* tₙ+¹/₂*(-2) *(tₙ)²

1000-s₁= V* tₙ-tₙ²                      -------Eq 4

Comparing Eq 1 and Eq 3

V= 1.5tₐ  and V=2tₙ                                                              

1.5tₐ = 2 tₙ

tₐ=1.33 tₙ  

Using the above value of tₐ in Eq 1

V= 1.5 tₐ and tₐ= 1.33 tₙ

V= 2tₙ

Similarly from Eq 2 and putting the value of tₙ

s₁= ½*1.5*tₐ²      

s₁=  1.33*(tₙ)²

Substituting the above values in equation 4

1000-s₁= V* tₙ-tₙ²                      

1000- 1.33(tₙ)²=2*(tₙ)*(tₙ)- tₙ²

1000=2.33 (tₙ)²

tₙ=      1000/2.333    

tₙ= 20.7 sec

Similarly putting the value of tₙ in tₐ= 1.33 tₙ

tₙ= 27.5 sec

Hence total time is tₐ +tₙ  

T= 20.7+27.5= 48.2 sec                

You might be interested in
You’ve experienced convection cooling if you’ve ever extended your hand out the window of a moving vehicle or into a flowing wat
Anna35 [415]

Answer:

Condition A

Heat flux is 1400 W/M^2

Condition B

Heat flux is 12800 w/m^2

Explanation:

Given that:

T_s is given as  30 degree celcius

condition A

Air temperature =  - 5 degree c

convection coefficient h = 40 w/m^2. k

heat\ flux = \frac{Q}{a}= h\Delta = 40{30 - (-5)} = 1400 w/m^2

condition A

water temperature  = 10 degree c

convection coefficient = 800 w/m^2.k

heat\ flux = \frac{Q}{A} = H(\Delta} = 800\times (30-14) = 12800w/m^2

7 0
2 years ago
Can I get a hand? Thanks y’all much luv
Lilit [14]

Answer:

C

Explanation:

3 0
3 years ago
Suppose that a class CalendarDate has been defined for storing a calendar date with month, day and year components. (In our sect
laiz [17]

Answer:

note:

find the attachment

7 0
3 years ago
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
What prevented this weld from becoming ropey?
Mama L [17]

Answer:

If I am not mistaken I believe it is a higher voltage.

Explanation:

Hope this helps

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is shown in the above figure?
    11·2 answers
  • A rigid tank with a volume of 4 m^3 contains argon at 500 kPa and 30 deg C. It is connected to a piston cylinder (initially empt
    14·1 answer
  • Make sure that the switch is on (if the drill is electric), the chuck key is not removed before you plug in the drill or turn it
    11·2 answers
  • What are the basic parts of a radio system
    15·1 answer
  • 8.2.1: Function pass by reference: Transforming coordinates. Define a function CoordTransform() that transforms the function's f
    8·1 answer
  • I need help to convert 23.5 million nanometers to millimeters
    15·2 answers
  • A positive slope on a position-time graph suggests
    15·1 answer
  • A heating system must maintain the interior of a building at TH = 20 °C when the outside temperature is TC = 2 °C. If the rate o
    10·1 answer
  • Calculate the number of vacancies per cubic meter for some metal, M, at 783°C. The energy for vacancy formation is 0.95 eV/atom,
    11·1 answer
  • If you’re still enrolled in school, but are looking for a job, on your resume you should highlight:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!