Answer:
pH measures ratio of H+ ions to OH- ions of substances
pOH measures ratio of OH- ions to H+ ions of substances
Explanation:
pH is a scale which measures the ratio of H+ ions to OH- ions to identify how acidic or basic a substance is. This is because acidic substances have high amounts of H+ ions and low amounts of OH- ions, and therefore have a higher ratio of H+ to OH- ions. (And vice versa for bases, low H+ to OH- ratio) On a pH scale, acidic substances have a pH of 0 to 7, water (neutral pH, not acidic nor basic) has a pH of 7, and bases have a pH of 7-14.
pOH is very similar to pH but measures the opposite: the ratio of OH- ions (indicative of a base) to H+ ions (indicative of an acid). Therefore the pH values are reversed on the scale: Basic substances have pOHs below 7, and acidic substances are above 7 on the pOH scale.
Fundamentally, these two scales measure the same thing is the same way, one just measures the ratio one way (H+:OH-), while the other measured them the other way (OH-:H+), resulting in flipped values on the scales:
pH: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<---Acidic---> <------Basic------->
pOH: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<----Basic----> <-----Acidic------->
Hope this helped!
Answer:-
0.229 L
Explanation:-
Molar mass of AgBr = 107.87 x 1 + 79.9 x 1
=187.77 grams mol-1
Mass of AgBr = 150 grams
Number of moles of AgBr = 150 grams / 187.77 gram mol-1
= 0.8 mol
The balanced chemical equation is
NaBr (aq) + AgNO3 (aq)--> AgBr(s) + NaNO3(aq)
From the equation we can see that
1 mol of AgBr is produced from 1 mol of AgNO3.
∴ 0.8 mol of AgBr is produced from 1 x 0.8 / 1 = 0.8 mol of AgNO3.
Strength of AgNO3 = 3.5 M
Volume of AgNO3 required = Number of moles / strength
= 0.8 moles / 3.5
=0.229 L
Answer:
Is soft
Explanation:
because concrete is hard ash so t hink flour would be safer
Answer:
6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
Concentration is decreased to 1.56 % which means that 0.0156 of
is decomposed. So,
= 0.0156
Thus,
kt = 4.1604
The expression for the half life is:-
Half life = 15.0 hours
Where, k is rate constant
So,

<u>6 half-lives are required for the concentration of reactant to decrease to 1.56% of its original value.</u>