Answer:
See the answers below
Explanation:
1) 100. mL of solution containing 19.5 g of NaCl (3.3M)
2) 100. mL of 3.00 M NaCl solution (3 M)
3) 150. mL of solution containing 19.5 g of NaCl (2.2 M)
4) Number 1 and 5 have the same concentration (1.5M)
MW of NaCl = 23 + 36 = 59 g
For number 3
59 g ------------------- 1 mol
19,5 g ----------------- x
x = 19.5 x 1/59 = 0.33 mol
Molarity (M) = 0.33 mol/0.150 l = 2.2 M
For number 4,
Molarity (M) = 0.33mol/0.10 l = 3.3 M
For number 5
Molarity (M) = 0.450/0.3 = 1.5 M
Answer : The time required for decay is, 84 days.
Explanation :
Half-life of chromium-51 = 28 days
First we have to calculate the rate constant, we use the formula :
![k=\frac{0.693}{t_{1/2}}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B0.693%7D%7Bt_%7B1%2F2%7D%7D)
![k=\frac{0.693}{28\text{ days}}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B0.693%7D%7B28%5Ctext%7B%20days%7D%7D)
![k=0.0248\text{ days}^{-1}](https://tex.z-dn.net/?f=k%3D0.0248%5Ctext%7B%20days%7D%5E%7B-1%7D)
Now we have to calculate the time required for decay.
Expression for rate law for first order kinetics is given by:
![t=\frac{2.303}{k}\log\frac{a}{a-x}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B2.303%7D%7Bk%7D%5Clog%5Cfrac%7Ba%7D%7Ba-x%7D)
where,
k = rate constant
t = time taken by sample = ?
a = let initial activity of the sample = 100
a - x = amount left after decay process = 12.5
Now put all the given values in above equation, we get
![t=\frac{2.303}{0.0248}\log\frac{100}{12.5}](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B2.303%7D%7B0.0248%7D%5Clog%5Cfrac%7B100%7D%7B12.5%7D)
![t=83.9\text{ days}\approx 84\text{ days}](https://tex.z-dn.net/?f=t%3D83.9%5Ctext%7B%20days%7D%5Capprox%2084%5Ctext%7B%20days%7D)
Therefore, the time required for decay is, 84 days.
The balanced equation for the reaction between Mg and HCl is as follows
Mg + 2HCl --> MgCl₂ + H₂
stoichiometry of HCl to H₂ is 2:1
number of HCl moles reacted - 0.400 mol/L x 0.100 L = 0.04 mol of HCl
since Mg is in excess HCl is the limiting reactant
number of H₂ moles formed - 0.04/2 = 0.02 mol of H₂
we can use ideal gas law equation to find the volume of H₂
PV = nRT
where
P - pressure - 1 atm x 101 325 Pa/atm = 101 325 Pa
V - volume
n - number of moles - 0.02 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 0 °C + 273 = 273 K
substituting these values in the equation
101 325 Pa x V = 0.02 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 448 x 10⁻⁶ m³
V = 448 mL
therefore answer is
c. 448 mL
¹/3 C3H8(g) + ⁵/3 O2(g)
Explanation:
The coefficient before every molecule is representative of the number of moles. We can represent it in ration form so as to calculate the question;
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(l) means;
For every 1 mole of C₃H₈(g) and 5 moles of O₂(g) produces 3 moles of CO₂(g) and 4 moles of H₂O(l).
Therefore to produce 1.00 mole of CO₂(g);
We represent it in ratio;
C₃H₈(g) : CO₂(g)
1 : 3
What about ;
? (x) : 1
We cross multiply;
3x = 1 * 1
X = 1/3
We evaluate the same for O₂;
O₂(g) : CO₂(g)
5 : 3
What about
? (x) : 1
3x = 5 * 1
x = 5/3
Learn More:
For more on evaluating moles in chemical reactions check out;
brainly.com/question/13967925
brainly.com/question/13969737
#LearnWithBrainly
I think it's covalent...? Hope that helps.