Answer:
the answer is A
I made a chart for AP chem if you want to refer to it.
The enthalpy change for an exothermic reaction is negative because heat is being released, so that takes out two of the responses. Since energy is being released into the surroundings due to the exothermic reaction, the potential energy of the products is lower than that of the reactants. Energy is being put in to make the reaction occur, but then that energy is all being released into the surroundings thus a lower potential energy level for the products
Answer:
0.42 M
Explanation:
The reaction that takes place is:
- Cu(CH₃COO)₂ + Na₂CrO₄ → Cu(CrO₄) + 2Na(CH₃COO)
First we <u>calculate the moles of Na₂CrO₄</u>, using the <em>given volume and concentration</em>:
(200 mL = 0.200L)
- 0.70 M * 0.200 L = 0.14 moles Na₂CrO₄
Now we <u>calculate the moles of Cu(CH₃COO)₂</u>, using its <em>molar mass</em>:
- 40.8 g ÷ 181.63 g/mol = 0.224 mol Cu(CH₃COO)₂
Because the molar ratio of Cu(CH₃COO)₂ and Na₂CrO₄ is 1:1, we can directly <u>substract the reacting moles of Na₂CrO₄ from the added moles of Cu(CH₃COO)₂</u>:
- 0.224 mol - 0.14 mol = 0.085 mol
Finally we <u>calculate the resulting molarity</u> of Cu⁺², from the <em>excess </em>cations remaining:
- 0.085 mol / 0.200 L = 0.42 M
Answer:
282.7KPa
Explanation:
Step 1:
Data obtained from the question.
Number of mole of (n) = 1.5 mole
Volume (V) = 13L
Temperature (T) = 22°C = 22 + 273°C = 295K
Pressure (P) =..?
Gas constant (R) = 0.082atm.L/Kmol
Step 2:
Determination of the pressure exerted by the gas.
This can be obtained by using the ideal gas equation as follow:
PV = nRT
P = nRT /V
P = 1.5 x 0.082 x 295 / 13
P = 2.79atm.
Step 3:
Conversion of 2.79atm to KPa.
This is illustrated below:
1 atm = 101.325KPa
Therefore, 2.79atm = 2.79 x 101.325 = 282.7KPa
Therefore, the pressure exerted by the gas in KPa is 282.7KPa
Dilution formula:
mv = MV
where one side is concentration × volume BEFORE dilution and the other side is concentration × volume AFTER dilution.
(100mL) × (12 M) = (500mL) × (X)
(1200 M·mL) = (500mL) × (X)
(1200 M·mL) / (500mL) = X
2.4 M = X