The reactions of the Calvin cycle add carbon from carbon dioxide in the atmosphere to a five-carbon molecule known as RuBP. These reactions use chemical energy that were produced in the light reactions, from NADPH and ATP. The final product of the Calvin cycle is glucose.
All of the boxes in the chart are Gg
1. 100%
2. 0%
Molecular formula of ascorbic acid is 
Molar mass of ascorbic acid = 
Converting 500.0 mg of ascorbic acid to moles: We use molar mass of ascorbic acid to convert mass to moles.

Converting 500.0 mg of ascorbic acid to molecules: The conversion factor used is 1 mole = 

<u>Answer:</u> The mass of sample A after given time is 99.05 g.
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
The equation used to calculate half life for first order kinetics:

We are given:

Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 84.2 s
= initial amount of the reactant = 250 g
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![0.011s^{-1}=\frac{2.303}{84.2s}\log\frac{250}{[A]}](https://tex.z-dn.net/?f=0.011s%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B84.2s%7D%5Clog%5Cfrac%7B250%7D%7B%5BA%5D%7D)
![[A]=99.05g](https://tex.z-dn.net/?f=%5BA%5D%3D99.05g)
Hence, the mass of sample A after given time is 99.05 g.