It isn't a materialistic object.
The function that is NOT related to a protein is:
Membane fluidity.
Membrane fluidity is not related to a protein function because membrane fluidity is a function of lipids not proteins.
Transport and all other options are involved in functions of protein.
Answer:
Most of these rocks are not made up of common geometric shapes
Explanation:
Because most rocks are not made up of common geometric shapes, it would be difficult or impossible to find the volume of a rock using a ruler; there would be no easy way to measure the rock's volume using a ruler
Hope this helped!
We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.