The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
<h3>
What is Mole ?</h3>
A mole is a very important unit of measurement that chemists use.
A mole of something means you have 6.023 x 10 ²³ of that thing.
- For 2.15 mol of hydrogen sulphide (H₂S) :
1 mole hydrogen sulphide (H₂S) = 34.08088 grams
Therefore,
2.15 mol of hydrogen sulphide (H₂S) = 34.08088 grams x 2.15 mol
= 73.272 gm
- For 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) ;
1 mol of lead(II) iodide, (PbI₂) = 461.00894 grams
Therefore,
3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) = 461.00894 grams x 3.95 × 10⁻³ mol
= 1.82 gm
Hence,The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm
Learn more about mole here ;
brainly.com/question/21323029
#SPJ1
Answer:
c = 0.13 j/ g.°C
Explanation:
Given data:
Mass of mercury = 29.5 g
Initial temperature = 32°C
Final temperature = 161°C
Heat absorbed = 499.2 j
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 - T1
ΔT = 161°C - 32°C
ΔT = 129 °C
Q = m.c. ΔT
c = Q / m. ΔT
c = 499.2 j / 29.5 g. 129 °C
c = 499.2 j / 3805.5 g. °C
c = 0.13 j/ g.°C
I believe the answer is A. However, I would double check the formula.