Solar Radiation, The Solar Wind, and Gamma Ray Bursts
Answer:
p_k=\sqrt{p_x^2+p_y^2}}
Explanation:
Apply the momentum in each direction knowing that the impact is at the same time for the pieces so




So the momentum in the other piece can be find knowing that

So:



To find the velocity knowing the mass



Answer:
hope it helps brainliest pls. and the answer is the one that is circled in red color.
Explanation:
West to east.
The earth is spinning on its own axis. Thus, the area of the equator directly hit by the sun's heat and more solar radiation compared to any other area. That same heat warmth the atmosphere. Warm air rises towards the pole which is cooler. This is the reason of constant movement of the atmosphere.
The Coriolis force governed the air flows towards the pole. While the earth is spinning plus the movement of air north or south, the air follows a <span>curved path, toward the east.</span>
Answer:
v = √ 2 G M/
Explanation:
To find the escape velocity we can use the concept of mechanical energy, where the initial point is the surface of the earth and the end point is at the maximum distance from the projectile to the Earth.
Initial
Em₀ = K + U₀
Final
= 
The kinetic energy is k = ½ m v²
The gravitational potential energy is U = - G m M / r
r is the distance measured from the center of the Earth
How energy is conserved
Em₀ = 
½ mv² - GmM /
= -GmM / r
v² = 2 G M (1 /
– 1 / r)
v = √ 2GM (1 /
– 1 / r)
The escape velocity is that necessary to take the rocket to an infinite distance (r = ∞), whereby 1 /∞ = 0
v = √ 2GM /