1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
8

In this problem, you will practice applying this formula to several situations involving angular acceleration. In all of these s

ituations, two objects of masses m1 and m2 are attached to a seesaw. The seesaw is made of a bar that has length l and is pivoted so that it is free to rotate in the vertical plane without friction. You are to find the angular acceleration of the seesaw when it is set in motion from the horizontal position. In all cases, assume that m1>m2, and that counterclockwise is considered the positive rotational direction.a) Assume that the mass of the swing bar, as shown in the figure, is negligible. Find the magnitude of the angular acceleration a(alpha) of the seesaw. Express in variables of m1, m2, l and g.b) Now consider a similar situation, except that now the swing bar itself has mass mbar . (Part C figure)
Find the magnitude of the angular acceleration a (alpha) of the seesaw. GIve answer as variables as before.
Physics
1 answer:
riadik2000 [5.3K]3 years ago
7 0

Answer:

Part a)

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

Explanation:

As we know that the see saw bar is massless so here torque due to two masses is given as

\tau = I\alpha

here we will have

\tau = (m_1g - m_2g)(\frac{L}{2})

now we will have inertia of two masses given as

I = (m_1 + m_2)(\frac{L}{2})^2

now we have

I = (m_1 + m_2)\frac{L^2}{4}

now the angular acceleration is given as

\alpha = \frac{\tau}{I}

so we have

\alpha = \frac{2(m_1 - m_2)g}{(m_1 + m_2)L}

Part b)

Now if the rod is not massles then we will have total inertia given as

I = (m_1 + m_2)(\frac{L}{2})^2 + \frac{m_{bar}L^2}{12}

so we will have

I = (m_1 + m_2)\frac{L^2}{4} + \frac{m_{bar}L^2}{12}

now the acceleration is given as

\alpha = \frac{\tau}{I}

\alpha = \frac{6(m1 - m_2)g}{3(m_1 + m_2)L + m_{bar}L}

You might be interested in
Why are the alkali metals likely to react with group 17 elements?
Rudiy27

Answer:

Because alkali metals are so reactive, they are found in nature only in combination with other elements. They often combine with group 17 elements, which are very “eager” to gain an electron.

Explanation:

hope this helps you if it does please mark brainliest

7 0
3 years ago
Which state Which states of matter have a set volume? Explain why this is, based on the animations you observed for the differen
Lyrx [107]

Answer: Solid

Explanation: There are 3 major state of matter - solid, liquid and gas.

Among the 3 state, solid has a fixed volume while liquid takes the volume of its container. When gas is compressed, it takes the volume of its container likewise.

7 0
3 years ago
An asteroid is on a collision course with Earth. An astronaut lands on the rock to bury explosive charges that will blow the ast
forsale [732]

Answer:

The maximum radius the asteroid can have for her to be able to leave it entirely simply by jumping straight up is approximately 1782.45 meters

Explanation:

Whereby the height the astronaut can jump on Earth = 0.500 m, we have the following kinematic equation;

v² = u² - 2·g·h

Where;

v = The final velocity

u = The initial velocity

g = The acceleration due to gravity ≈ 9.8 m/s²

h = The height she jumps

At the maximum height, h_{max} = 0.500 m, she jumps, v = 0, therefore, we have;

0² = u² - 2·g·h_{max}

u² = 2 × 9.8 × 0.5 = 9.8

u = √9.8 ≈ 3.13

u = 3.13 m/s

Her initial jumping velocity ≈ 3.13 m/s

Escape velocity, v_e = \sqrt{\dfrac{2 \cdot G \cdot M}{r} }

Where;

M = The mass of the asteroid

G = The Universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)

r = The radius of the asteroid

The average density of the Earth = 5515 kg/m³

The mass of the asteroid, M = Density × Volume = 5515 kg/m³× 4/3 × π × r³

The escape velocity, she has, v_e ≈ 3.13 m/s is therefore;

3.13 = \sqrt{\dfrac{2 \times 6.67408 \times 10^{-11} \times 5515 \times \frac{4}{3} \times \pi \times r^3}{r} } = r \times \sqrt{3.084 \times 10^{-6}}

r = \dfrac{3.13}{ \sqrt{3.084 \times 10^{-6}}} \approx 1782.45

Therefore, the maximum radius of the asteroid can have for her jumping velocity to be equal to the escape velocity for her to be able to leave it entirely simply by jumping straight up = r ≈ 1782.45 meters.

7 0
3 years ago
Review Conceptual Example 6 as background for this problem. A car is traveling to the left, which is the negative direction. The
DiKsa [7]

Answer:

(a) 1.21 m/s² (b) 1.75 m/s²

Explanation:

The initial speed of the car, u = 17.8 m/s

Case 1.

Final speed of the car, v = 23.5 m/s

Time, t = 4.68-s

Acceleration = rate of change of velocity

a=\dfrac{23.5 -17.8 }{4.68}\\\\a=1.21\ m/s^2

Case 2.

Final speed of the car, v = 15.3 m/s

a=\dfrac{23.5 -15.3}{4.68}\\\\a=1.75\ m/s^2

Hence, this is the required solution.

3 0
2 years ago
What is dark energy?
expeople1 [14]
Dark energy is a theoretical repulsive energy that causes the acceleration to the expansion of the universe. Among the choices, the nearest answer would be D. Dark energy can also be defined as a new form of energy, that is a dynamic field that fills up space but has an effect opposite to that of normal energy.
4 0
3 years ago
Other questions:
  • What is the term of movement in a particular direction
    5·1 answer
  • What is the change in temperature for the aluminum wire?
    7·2 answers
  • Why do gases condense when they are cooled
    7·1 answer
  • What conclusions can be drawn about the existence of carbon-12, carbon-13, and carbon-14?
    15·2 answers
  • If a force of 40N is applied for 0.2 sec to change the momentum of a volleyball, what is the impulse?
    9·1 answer
  • If a ball has the weight of 3.76, how much work would it take to lift it 2 meters above the ground? (sorry if this question does
    11·1 answer
  • A child sleds down a hill with an acceleration of 2.94 m/s2. If her initial speed is 0.0 m/s and her final speed is 17.5 m/s, ho
    12·1 answer
  • Which of the following is true of alternating current? Select all that apply.
    13·1 answer
  • Momentum is most similar to which other physics concept?
    11·1 answer
  • Which purpose does a light bulb serve in a circuit?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!