Answer:
B
Explanation:
graph b shows a steady pace of movement for 20 minutes and then shows a plateau in the distance, showing that while time keeps moving (obviously), the distance doesn't change. then after 5 minutes, the student gets up and starts running again. hope this helped!
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.
That's true. The mass of your body is like the money
in your pocket. It doesn't change, no matter where you
take it.
Answer:
minimum frequency = 170 Hz
Explanation:
given data
One path long = 20 m
second path long = 21 m
speed of sound = 340 m/s
solution
we get here destructive phase that is path difference of minimum
here λ is the wavelength of the wave
so path difference will be
21 - 20 =
λ = 2 m
and
velocity that is express as
velocity = frequency × wavelength .............1
frequency =
minimum frequency = 170 Hz