Answer:
Explanation:
Initially no of atoms of A = N₀(A)
Initially no of atoms of B = N₀(B)
5 X N₀(A) = N₀(B)
N = N₀ 
N is no of atoms after time t , λ is decay constant and t is time .
For A
N(A) = N(A)₀ 
For B
N(B) = N(B)₀ 
N(A) = N(B) , for t = 2 h
N(A)₀
= N(B)₀ 
N(A)₀
= 5 x N₀(A) 
= 5 
= 5 
half life = .693 / λ
For A
.77 = .693 / λ₁
λ₁ = .9 h⁻¹
= 5 
Putting t = 2 h , λ₁ = .9 h⁻¹
= 5 
= 30.25
2 x λ₂ = 3.41
λ₂ = 1.7047
Half life of B = .693 / 1.7047
= .4065 hours .
= .41 hours .
Answer:
b) in a direction that makes its potential energy decrease.
Explanation:
- As the electric field has the direction that would take a positive test charge under its sole influence, the positive test charge, will have an increase in its kinetic energy.
- Due to the conservation of energy, in absence of non-conservative forces, this increment must be equal and opposite to the change in electric potential energy, which will be always negative, independent of the sign of the charge.
Answer:
so easy add the subtract then multiplay the add
Explanation:
Answer:
the answer is 45.6 kg = 45600 g
Answer:
A) The acceleration is zero
<em>B) The total distance is 112 m</em>
Explanation:
<u>Velocity vs Time Graph</u>
It shows the behavior of the velocity as time increases. If the velocity increases, then the acceleration is positive, if the velocity decreases, the acceleration is negative, and if the velocity is constant, then the acceleration is zero.
The graph shows a horizontal line between points A and B. It means the velocity didn't change in that interval. Thus the acceleration in that zone is zero.
A. To calculate the acceleration, we use the formula:

Let's pick the extremes of the region AB: (0,8) and (12,8). The acceleration is:

This confirms the previous conclusion.
B. The distance covered by the body can be calculated as the area behind the graph. Since the velocity behaves differently after t=12 s, we'll split the total area into a rectangle and a triangle.
Area of rectangle= base*height=12 s * 8 m/s = 96 m
Area of triangle= base*height/2 = 4 s * 8 m/s /2= 16 m
The total distance is: 96 m + 16 m = 112 m