Answer: F = 33.6 N
Explanation: work = force · distance or W = F·s
Force F = W/s = 504 J/15 m
Answer:
Given:
radius of the coil, R = 6 cm = 0.06 m
current in the coil, I = 2.65 A
Magnetic field at the center, B =
Solution:
To find the number of turns, N, we use the given formula:

Therefore,

N = 22.74 = 23 turns (approx)
Answer:
17.1
Explanation:
The distance ahead, of the deer when it is sighted by the park ranger, d = 20 m
The initial speed with which the ranger was driving, u = 11.4 m/s
The acceleration rate with which the ranger slows down, a = (-)3.80 m/s² (For a vehicle slowing down, the acceleration is negative)
The distance required for the ranger to come to rest, s = Required
The kinematic equation of motion that can be used to find the distance the ranger's vehicle travels before coming to rest (the distance 's'), is given as follows;
v² = u² + 2·a·s
∴ s = (v² - u²)/(2·a)
Where;
v = The final velocity = 0 m/s (the vehicle comes to rest (stops))
Plugging in the values for 'v', 'u', and 'a', gives;
s = (0² - 11.4²)/(2 × -3.8) = 17.1
The distance the required for the ranger's vehicle to com to rest, s = 17.1 (meters).