Answer:
A) ( - 200t + 40 ) volts
B) b) anticlockwise , c) anticlockwise , d) clockwise , e) clockwise
Explanation:
Given data:
magnetic flux (Φm) = 5.0t^2 − 2.0t
number of turns = 20
<u>a) determine induced emf </u>
E = - N
= - N ( 10t - 2 ) = - 20 ( 10t - 2 )
= - 200t + 40 volts
<u>b) Determine direction of induced current </u>
i) at t = 0
E = - 0 + 40 ( anticlockwise direction )
ii) at t = 0.10
E = -20 + 40 = 20 ( anticlockwise direction )
iii) at t = 1
E = - 200 + 40 = - 160 ( clockwise direction)
iv) at t = 2
E = -400 + 40 = - 360 ( clockwise direction )
Answer:
v₁ = -0.8087 m / s
Explanation:
To solve this problem we can use the conservation of momentum, for this we define a system formed by the man, the skateboard and the brick, therefore the force during the separation is internal and the momentum is conserved
Initial instant. When they are united
p₀ = 0
Final moment. After throwing the brick
= (m_man + m_skate) v1 + m_brick v2
the moment is preserved
p₀ = p_{f}
0 = (m_man + m_skate) v₁ + m_brick v₂
v₁ = -
the negative sign indicates that the two speeds are in the opposite direction
let's calculate
v₁ = -
v₁ = -0.8087 m / s
There are three main factors that affect wave formation: wind velocity, fetch, and duration.
Waves are most commonly caused by wind. Wind-driven waves, or surface waves, are created by the friction between wind and surface water. As wind blows across the surface of the ocean or a lake, the continual disturbance creates a wave crest.
The core has positive charge<span>, the electrons have negative </span>charge. When you are rubbing<span> the </span>glass rod<span> with the </span>silk cloth<span>, electrons are stripped away from the atoms in the </span>glass<span> and transferred to the </span>silk cloth<span>. This leaves the </span>glass rod<span> with more </span>positive<span> than negative </span>charge<span>, so you get a net </span>positive charge<span>.</span>