By the Newtons Second Law:
F = ma
F = (47 kg)(15 m/s²)
<h2>F = 705 N</h2>
Answer:-81.29 J
Explanation:
Given
mass of ball 
Length of string 
height of Room 
Gravitational Potential Energy is given by

where h=distance between datum and object
here Reference is ceiling
therefore 
Potential Energy of ball w.r.t ceiling

i.e. 81.29 J of Energy is required to lift a ball of mass 2.35 kg to the ceiling
Answer:
C. The voltage drop across the resistor is 2.1V and nothing about the current through the resistor.
Explanation:
When connected in parallel, voltage across the resistances are the same. So if 2.1V was dropped across the LED then 2.1V was also dropped across the resistor. However, this tells us nothing about the current through the resistor. We can find the current across the resistor if we know the resistance of the resistor, but that's about it.
If it were a series connection, then the current would have been the same, but the voltage drop were another story.
C should be the right answer! hopefully this helps!
Answer:
Φ= 17 N•m²•C⁻¹
Explanation:
Gauss's Law states that electric flux equals the surface integral of E•dA. But since we are given all the variables as finite values, we can simplify it into EAcosφ.
-E is given as 95N/C
-A is simply (.4)(.6)=.24m²
-φ is the angle between the E field/vector and the normal/perpendicular vector to the surface. We know that E makes a 20° to the surface here, so the angle φ=(90-20)°=70°. So the E vector makes a 70° angle to the normal of the surface. (I can see this portion as being the point of confusion, as it was for me at first.)
With all that we can say that the flux Φ is:
Φ=(95)(0.24)(cos[70°])=17.4384... N•m²•C⁻¹
I'll approximate to 2 sigfigs in my answer, since that'd be the technical answer.
*I believe V/m are also correct units for electric flux.