1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
3 years ago
5

2- A car on a straight highway goes in the positive direction for 8 km and then backs up for 3.6 km. What are the distance and d

isplacement covered by the train?
Physics
1 answer:
IRISSAK [1]3 years ago
4 0

Answer:

11.6km

4.4km in the negative direction

Explanation:

Distance is the total length of path covered and traveled by a body.

So, for this car on a straight line;

  Total distance  = 8km + 3.6km  = 11.6km

Displacement is the distance traveled along a path and the direction it takes.

It is a vector quantity with magnitude and directional attributes.

For this journey;

 Displacement  = 8km  - 3.6km  = 4.4km in the negative direction.

You might be interested in
A projector is placed on the ground 22 ft. away from a projector screen. A 5.2 ft. tall person is walking toward the screen at a
Stella [2.4K]

Answer:

y = 67.6 feet,   y = 114.4/ (22 - 3t)

Explanation:

For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram

Large triangle Projector up to the screen

         tan θ = y / L

For the small triangle. Projector up to the person

         tan θ = y₀ / (L-d)

The angle is the same, so we equate the two equations

         y₀ / (L -d) = y / L

         y = y₀  L / (L-d)

The distance from the screen (d), we look for it with kinematics

         v = d / t

        d = v t

we replace

         y = y₀ L / (L - v t)

         y = 5.2 22 / (22 - 3 t)

         y = 114.4 (22 - 3t)⁻¹

This is the equation of the shadow height change as a function of time

For the suggested distance the shadow has a height of

           y = 114.4 / (22-13)

           y = 67.6 feet

7 0
3 years ago
Positive Charge is distributed along the entire x axis with a uniform density 12 nC/m. A proton is placed at a position of 1.00
lions [1.4K]

Answer:

b.  \Delta KE = 390 eV

Explanation:

As we know that the electric field due to infinite line charge is given as

E =\frac{\lambda}{2\pi \epsilon_0 r}

here we can find potential difference between two points using the relation

\Delta V = \int E.dr

now we have

\Delta V = \int(\frac{\lambda}{2\pi \epsilon_0 r}).dr

now we have

\Delta V = \frac{\lambda}{2\pi \epsilon_0}ln(\frac{r_2}{r_1})

now plug in all values in it

\Delta V = \frac{12\times 10^{-9}}{2\pi \epsilon_0}ln(\frac{1+5}{1})

\Delta V = 216ln6 = 387 V

now we know by energy conservation

\Delta KE = q\Delta V

\Delta KE = (e)(387V) = 387 eV

3 0
3 years ago
A steel wire of length 31.0 m and a copper wire of length 17.0 m, both with 1.00-mm diameters, are connected end to end and stre
Brut [27]

Answer:

The time taken is  t =  0.356 \ s

Explanation:

From the question we are told that

  The length of steel the wire is  l_1  = 31.0 \ m

   The  length of the  copper wire is  l_2  = 17.0 \ m

    The  diameter of the wire is  d =  1.00 \ m  =  1.0 *10^{-3} \ m

     The  tension is  T  =  122 \ N

     

The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

              t  =  t_s  +  t_c

Where  t_s is the time taken to transverse the steel wire which is mathematically represented as

         t_s  = l_1 *  [ \sqrt{ \frac{\rho * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_s is the density of steel with a value  \rho_s  =  8920 \ kg/m^3

   So

      t_s  = 31 *  [ \sqrt{ \frac{8920 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_s  = 0.235 \ s

 And

        t_c is the time taken to transverse the copper wire which is mathematically represented as

      t_c  = l_2 *  [ \sqrt{ \frac{\rho_c * \pi *  d^2 }{ 4 *  T} } ]

here  \rho_c is the density of steel with a value  \rho_s  =  7860 \ kg/m^3

 So

      t_c  = 17 *  [ \sqrt{ \frac{7860 * 3.142*  (1*10^{-3})^2 }{ 4 *  122} } ]

      t_c  =0.121

So  

   t  = t_c  + t_s

    t =  0.121 + 0.235

    t =  0.356 \ s

4 0
3 years ago
In need help I need someone that is really good at physics
Aloiza [94]
10/70×360°
=51.4°

hope thus helps
5 0
4 years ago
Does a car still have acceleration when it's on cruise control? Explain.
Vladimir79 [104]

Answer: Yes

because.....

When the cruise control is engaged, the throttle can still be used to accelerate the car. Also,

* Hopefully this helps:) Mark me the brainliest:)!!!

4 0
3 years ago
Read 2 more answers
Other questions:
  • A fishing rod is an example of a lever. Which diagram shows the correct positions of the input force, output force, and fulcrum
    6·2 answers
  • Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
    15·2 answers
  • The mass of Venus is 81.5% that of the earth, and its radius is 94.9% that of the earth. If a rock weighs 75.0 N on earth, compu
    11·1 answer
  • Which cell part distinguishes a eukaryotic cell?
    15·2 answers
  • The demand equation for the Roland portable hairdryer is given as follows where x (measured in units of a hundred) is the quanti
    13·1 answer
  • a moving truck takes a much longer time to stop than that taken by a car when brakes are pressed at the same time​
    14·1 answer
  • What is the ƒ if v = 50 m/s and λ = 10 m?
    5·1 answer
  • The mass of the hammer is 0.454 kg. Calculate the weight of the hammer.
    9·2 answers
  • Who made the first game
    5·1 answer
  • This is being graded.<br><br><br>Great answers only<br><br><br>​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!