Answer: Within any frame of reference that is accelerating
Special relativity was proposed on 1905 by Einstein, who developed his theory based on the following two postulates:
1. <em>The laws of physics are the same in all inertial systems. There is no preferential system.
</em>
2. <em>The speed of light in vacuum has the same value for all inertial systems.
</em>
Focusing on the first postulate, it can be affirmed that <u>any measurement on a body is made with reference to the system in which it is being measured</u>.
Now, taking into account that an inertial reference system is the one that complies with the principle of inertia:
<em>"For a body to have acceleration, an external force must act on it."</em>
The correct answer is
Within any frame of reference that is accelerating
False. When a chemical reaction occurs, atoms don't create or destroy. They are rearranged as bonds and are broken and formed together.
The answer is Dynamite.
Explosive, any substance or device that can be made to produce a volume of rapidly expanding gas in an extremely brief period. Chemical explosives are of two types; detonating, or high explosives and deflagrating, or low, explosives. Detonating explosives, such as TNT and dynamite, are characterized by extremely rapid decomposition and development of high pressure, whereas deflagrating explosives, such as black and smokeless powders, involve merely fast burning and produce relatively low pressures.
Answer:
t = 5.05 s
Explanation:
This is a kinetic problem.
a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m
b) in this system the equations of motion are
y = v₀ t + ½ g t²
where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth
e) y = 0 + ½ g t²
t = √ (2y / g)
t = √(2 125 / 9.8)
t = 5.05 s
Answer: A
Explanation: isotopes of the same thing element have the same number of protons in the nucleus but differ in the number of neutrons.