Answer:
<h2>B) Newton's 2nd law</h2>
Explanation:
<h2>From; force= mass × acceleration </h2><h2> f= m×a </h2><h2>where a(acceleration)= velocity/time</h2><h3> force = mv/t</h3><h3>But momentum(p) = Mass × velocity </h3><h2>hence force =p/t </h2><h3>that is Momentum = force × time ( Newton's 2nd law)</h3>
Answer:
12500W
Explanation:
Given parameters:
Work done = 250000J
Time taken = 20s
Unknown:
Power of the crane = ?
Solution:
Power is the defined as the rate at which work is being done;
Mathematically;
Power =
insert the parameters and solve;
Power =
= 12500W
<span>Even though the Sun has a greater mass than Earth, the Moon orbits Earth because it's closer to the Earth than to the Sun. Because of this proximity between the Earth and the Moon, the Earth has a stronger gravitational pull than the Sun does. Furthermore, the Earth's mass is 81 times that of the Moon, and so at this proximity, it is more than able to overpower what pull the Sun exerts on the Moon.</span>
Answer:
For destructive interference phase difference is
where n∈ Whole numbers
Explanation:
For sinusoidal wave the interference affects the resultant intensity of the waves.
In the given example we have two waves interfering at a phase difference of
would lead to a constructive interference giving maximum amplitude at at the RMS value of the amplitude in resultant.
Also the effect is same as having a phase difference of
because after each 2π the waves repeat itself.
<em>In case of destructive interference the waves will be out of phase i.e. the amplitude vectors will be equally opposite in the direction at the same place on the same time as shown in figure.</em>
They have a phase difference of
or which is same as 
Generalizing to:
a phase difference of
where n∈ {W}
{W}= set of whole numbers.