18.The octet rule tells us that in every chemical
reactions, elements will either gain or lose electrons to attain the noble gas electron
configuration. This stable<span> electron configuration is known as the octet configuration
since it is composed of 8 valence. Oxygen’s electron configuration is 1s2 2s2
2p4. So when</span> oxygen reacts with
other elements to form compounds, it completes the octet configuration by
taking 2 electrons from the element
it reacts with
19. Actually pure metals are made up not of
metal atoms but rather of closely packed cations (positively charge particles).
These cations are then surrounded by a pack of mobile valence electrons which
drift from one part of the metal<span> to
another. This is called metallic bond.</span>
20. This is the
energy which is needed to break a single bond. When the dissociation energy is
large, this means that the compound is more stable. Since carbon to carbon
bonds have high dissociation energy, therefore they are not very reactive.
21. Network solids are type of solids
in which the atoms are covalently bonded to one another, so they are very
stable. It takes higher temperature to melt them because breaking these
covalent bonds required greater energy. Some examples are:
- Diamond
<span>-Silicon Carbide</span>
Answer: 8.59 L of oxygen gas are needed to produce 100 kJ of energy at STP
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
Standard condition of temperature (STP) is 273 K and atmospheric pressure is 1 atmosphere respectively.
1 mole of every gas occupy volume at STP = 22.4 L
The balanced chemical reaction is:

3909.9 kJ of of energy is produced by = 
100 kJ of oxygen gas are needed to produce = 
Hi there,
the answer to the blank is: boiling point
When a liquid is heated, the temperature stops rising at the liquid's boiling point.
Hope this is correct :)
Have a great day
Answer:
4.68x10²⁵ ions of Na⁺
Explanation:
First of all, we dissociate the salt:
NaCl(aq) → Na⁺(aq) + Cl⁻(aq)
An aqueous solution of NaCl dissociates in chlorides anions and sodium cations. Ratio is 1:1, per 1 mol of NaCl, we have 1 mol of Na⁺
We determine the moles of salt: 4543.3 g . 1mol / 58.45 g = 77.7 moles
77.7 moles are the amount of NaCl, therefore we have 77.7 moles of Na⁺.
We count the ions:
1 mol fo Na⁺ has 6.02x10²³ ions
77.7 moles of Na⁺ must have (77.7 . 6.02x10²³) / 1 = 4.68x10²⁵ ions of Na⁺