This is so basic bro u gotta first move
Answer:
<span>Formula New Combination Predicted Formula
</span>
NaCl potassium + chlorine KCl
AlCl₃ aluminum + fluorine AlF₃
CO₂ tin + oxygen SnO₂
MgCl₂ calcium + bromine CaBr₂
HCl cesium + iodine CsI
<span>
CCl₄ silicon + bromine SiBr₄</span>
Explanation:
1) The question is incomplete. The first part is missing.
This is the first part of the question.
<span>Applying
the principle that the elements of a particular column in the Periodic
Table share the same chemical properties, complete the following chart.
The first one has been done for you.
</span>
2) This is the given chart:
<span>Formula New Combination Predicted Formula
</span>
Cu₂O silver + oxygen Ag₂O ← this is the example.
NaCl potassium + chlorine
<span>
AlCl₃ aluminum + fluorine </span>
CO₂ tin + oxygen
<span>
MgCl₂ calcium + bromine </span>
<span>
HCl cesium + iodine </span>
<span>
CCl₄ silicon + bromine
</span>
3) This is how you find the new formula to complete the chart.
i) NaCl potassium + chlorine
Since potassium is in the same group of sodium, you predict that in the new formula Na is replaced by K giving KCl.
ii) AlCl₃ aluminum + fluorine
Since fluorine is in the same group that Al, then you predict that in the new formula Cl is replaced by F leading to AlF₃
iii) CO₂ tin + oxygen
Since tin is in the same group that C, you predict that in the new formula C is replaced by Sn leading to SnO₂
iv) MgCl₂ calcium + bromine
Since calcium is in the same group that Mg, and bromine is in the same group that Cl, you predict thea in the new formula calcium replaces Mg and bromine replaces Cl, leading to CaBr₂
v) HCl cesium + iodine
Since H is in the same column that cesium and Cl is in the same colum that iodine, you predict that in the new formula Cs replaces H and I replaces Cl leading to: CsI
<span>
vi) CCl₄ silicon + bromine
</span>
Since silicon is in the same column that C and bromine is in the same column that Cl, you predict that in the new formula Si replaces C and Br replaces Cl, leading to SiBr₄
<span>The
density of an object is defined to be its mass divided by the volume it
occupies. For this problem, the mass of the cube was given to be 25 g while its
volume is 125 cm</span>³. Thus, we simply divide 25 g by 125 cm³ to get the object’s density. We then calculate that the cube has a density of
0.2 g/ cm³.