Given question is incomplete. The complete question is as follows.
Balance the following equation:

Answer: The balanced chemical equation is as follows.

Explanation:
When a chemical equation contains same number of atoms on both reactant and product side then this equation is known as balanced equation.
For example, 
Number of atoms on reactant side:
H = 5
P = 1
O = 6
Ca = 1
Number of atoms on product side:
H = 6
P = 2
O = 9
Ca = 1
In order to balance this equation, we will multiply
by 2 on reactant side and we will multiply
by 2 on product side. Hence, the balanced chemical equation is as follows.

<u>Ans: Acetic acid = 90.3 mM and Sodium acetate = 160 mM</u>
Given:
Acetic Acid/Sodium Acetate buffer of pH = 5.0
Let HA = acetic acid
A- = sodium acetate
Total concentration [HA] + [A-] = 250 mM ------(1)
pKa(acetic acid) = 4.75
Based on Henderson-Hasselbalch equation
pH = pKa + log[A-]/[HA]
[A-]/[HA] = 10^(pH-pKa) = 10^(5-4.75) = 10^0.25 = 1.77
[A-] = 1.77[HA] -----(2)
From (1) and (2)
[HA] + 1.77[HA] = 250 mM
[HA] = 250/2.77 = 90.25 mM
[A-] = 1.77(90.25) = 159.74 mM
Percent strength (% w/w) of a solution is defined as the amount of solute present in 100 g of the solution.
Given data:
Mass of the solute, potassium chloride = 62.5 g
Volume of water (solution) = 187.5 ml
We know that the density of water = 1 g/ml
Therefore, the mass corresponding to the given volume of water
= 187.5 ml * 1 g/1 ml = 187.5 g
We have a solution of 62.5 g of potassium chloride in 187.5 g water
Therefore, amount of solute in 100 g of water= 62.5 * 100/187.5 = 33.33
The percentage strength = 33.33 %
Answer:
Explanation: Cellular respiration is the process that occurs in the mitochondria of organisms (animals and plants) to break down sugar in the presence of oxygen to release energy in the form of ATP. This process releases carbon dioxide and water as waste products.
Roughly, Aufbau Principle says that in an atom or an ion, electrons enter the shell with low energy first before entering the shell with high energy.
An atom has shells around its nucleus. Electrons enter these shells and orbit around the nucleus of an atom. To say about the properties of these shells, the shell nearest to the nucleus has the lowest energy. The farther the shell from the nucleus, the higher its energy. Aufbau Principle states that electrons enter the closest shell to the nucleus first since it has the lowest energy. When that shell has its maximum number of electrons is can hold, then the next electron will enter the second-closest shell to the nucleus, which has higher energy than the first shell.