Answer:
Matthias Schleiden, Theodor Schwann, and Rudolf Virchow
Explanation:
Answer:
7.25 x 10^47
Explanation:
1.204 x 10^24 moles*6.022 x 10^23 avogadro's number= 7.25 x 10^47
According to the information in the graph, it can be inferred that the amount of solute that will precipitate out of solution at 20°C is 130 grams.
<h3>How to calculate the amount of solute that precipitates out of solution?</h3>
To calculate the amount of solute that precipitates out of solution we must identify the solute data at 80°C and 20°C and identify the difference as shown below:
- Quantity of solute at 80°C: 170 grams.
- Quantity of solute at 20°C: 40 grams.
- 170 grams - 40 grams = 130 grams
According to the above, the amount of solute that will precipitate out of solution due to the change in temperature is 130 grams of KNO3.
Note: This question is incomplete because the graph is missing. Here is the graph
Learn more about solute in: brainly.com/question/7932885
#SPJ1
Answer is: thermal conductuction.
Thermal conductuction is the transfer of heat<span> through physical contact. </span>Thermal conduction<span> is the transfer of heat</span> by microscopic collisions of particles. <span>Heat spontaneously flows from a hotter to a colder body.
</span>The process of heat conduction depends on four basic factors: the temperature gradient<span>, the cross section of the </span>materials<span> involved, their path length and the properties of those materials.</span>
Answer : The voltage applied by the batteries is, 6.0 V
Solution : Given,
Resistance of flashlight = 2.4 ohm
Current in the circuit = 2.5 Ampere
Formula used :

where,
V = applied voltage
I = current in the circuit
R = resistance of light
Now put all the given values in the above formula, we get

Therefore, the voltage applied by the batteries is, 6.0 V