Since phosphoric acid is H3PO4, which is known from PO4, with a charge of 3- so 3 hydrogen would balance it out, and sodium hydroxide is NaOH, it can be assumed that it results in H3(OH)3 + Na3PO4.
First; use the relationship of molarity and moles/liter to find the moles of the solution.
so 0.600M ×0.030L = 0.018 moles
Then use the mole to mole ratio of lithium to lithium carbonate
0.18 × (2 Li ÷1 Li2CO3) = 0.036
and then multiply by Avogadro's number to find the ions of lithium
0.036 moles × (6.022×10^{23} ) = 2.167 ×10∧22 ions Li
In physical science applying a force over a displacement is called work.
Answer:
NO will be the limiting reagent.
Explanation:
The balanced equation is:
2 NO + 2 CO → N₂ + 2 CO₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- NO: 2 moles
- CO: 2 moles
- N₂: 1 mole
- CO₂: 2 moles
Being the molar mass of each compound:
- NO: 30 g/mole
- CO: 28 g/mole
- N₂: 28 g/mole
- CO₂: 44 g/mole
Then by stoichiometry the following quantities of mass participate in each reaction:
- NO: 2 moles* 30 g/mole= 60 g
- CO: 2 moles* 28 g/mole= 56 g
- N₂: 1 mole* 28 g/mole= 28 g
- CO₂: 2 moles* 44 g/mole= 88 g
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
To determine the limiting reagent, you can use a simple rule of three as follows: If 56 grams of CO react with 60 grams of NO, 3 grams of CO react with how much mass of NO?

mass of NO= 3.21 grams
But 3.21 grams of NO are not available, 3 grams are available. Since you have less moles than you need to react with 3 grams of CO, <u><em>NO will be the limiting reagent.
</em></u>
<u><em></em></u>