Answer:
Explanation:
As you move down a group, first ionization energy decreases. WHY? Electrons are further from the nucleus and thus easier to remove the outermost one.
16.4 grams is the mass of solute in a 500 mL solution of 0.200 M
.
sodium phosphate
Explanation:
Given data about sodium phosphate
atomic mass of Na3PO4 = 164 grams/mole
volume of the solution = 500 ml or 0.5 litres
molarity of sodium phosphate solution = 0.200 M
The formula for molarity will be used here to know the mass dissolved in the given volume of the solution:
The formula is
molarity = 
putting the values in the equation, we get
molarity x volume = number of moles
0.200 X 0.5= number of moles
number of moles = 0.1 moles
Atomic mass x number of moles = mass
putting the values in the above equation
164 x 0.1 = 16.4 grams
16.4 grams of sodium phosphate is present in 0.5 L of the solution to make a 0.2 M solution.
Answer:
umm ok lol thx for the f r e e points
Answer:
it would appear to be more concentrated than it should be because more base was added that should have been
Explanation:
The general formula of an acid is HX where H+ acts as the cation while X can be a halogen (Cl-, Fl-, Br-, etc) and acts as the anion. There are also cases where X is an ion like SO42-, which brings two atoms of H in the formula. Strong acids dissociate completely while weak acids do not.