Answer:
A) Devices that transfer kinetic energy have a source of power that is in motion
Kinetic energy is the energy in motion, as such, a device that transfers kinetic energy transfers the energy the power source has into other energy forms
B) Kerosene does not easily cold start like diesel which can burn after compression
C) The first law of thermodynamics states that energy is conserved and it can neither be created nor destroyed, but can be changed from one form to another.
Therefore, when energy is not available in a given location or body, it cannot be obtained from that body or location
Explanation:
For example, the atomic mass of an oxygen atom is 16.00 amu; that means the molar mass of an oxygen atom is 16.00 g/mol. Further, if you have 16.00 grams of oxygen atoms, you know from the definition of a mole that your sample contains 6.022 x 10^23 oxygen atoms.
There are types of lens; concave and convex lens.
The concave lens is a lens which has an inward curve in the middle, that is, the edges of the curve are thicker than the center of the lens, because of this, any light that enter the lens will spread out [diverge]. An image will look smaller and upright when viewed by a concave lens. Image formed by concave lens are usually VIRTUAL.
A concave lens will produce a real image ONLY if the object is located beyond the focal point of the lens.
A convex lens is a converging lens, this is because, the center of the lens is thicker than its edges. Any ray of light that passes through the lens will converge at the middle of the lens at point called principal focus. A convex lens produce a VIRTUAL image when the object is placed infront of the focal point. The virtual image formed is always magnified and upright.<span />
Answer:
310.53 g of Cu.
Explanation:
The balanced equation for the reaction is given below:
CuSO₄ + Zn —> ZnSO₄ + Cu
Next, we shall determine the mass of CuSO₄ that reacted and the mass Cu produced from the balanced equation. This can be obtained as follow:
Molar mass of CuSO₄ = 63.5 + 32 + (16×4)
= 63.5 + 32 + 64
= 159.5 g/mol
Mass of CuSO₄ from the balanced equation = 1 × 159.5 = 159.5 g
Molar mass of Cu = 63.5 g/mol
Mass of Cu from the balanced equation = 1 × 63.5 = 63.5 g
Summary:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Finally, we shall determine the mass of Cu produced by the reaction of 780 g of CuSO₄. This can be obtained as follow:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Therefore, 780 g of CuSO₄ will react to produce = (780 × 63.5)/159.5 = 310.53 g of Cu.
Thus, 310.53 g of Cu were obtained from the reaction.