A(n) Acute exposure is a short term or brief exposure that may create an immediate health hazard. Answer: A)
4Al + 3K2SiF6 = 6KF + 3Si + 4AIF3 is the reaction for preparation of silicon by the reduction of K₂SiF6 with Al.
AlF3xH2O-based inorganic compounds are referred to as aluminium fluoride. They are all solids without colour. Aluminium fluoride is a crystalline (sand-like), odourless, white, or colourless powder. In addition to being used to make aluminium, it also functions as a flux in welding processes and in ceramic glazes and enamels.
Silicon (Si) is created by reducing potassium silicofluoride with aluminium as the reducing agent (K2SIF6). While K2SiF6 is reduced to Si in this equation, aluminium is oxidised to aluminium fluoride. As a result, the balanced equation describing aluminum's reduction of K2SiF6 to silicon non-metal is as follows: 4Al + 3K2SiF6 = 6KF + 3Si + 4AIF3
Learn more about aluminium fluoride here:
brainly.com/question/17131529
#SPJ4
In the early 1900s, a scientist named Alfred Wegener noticed how the continents seem to fit together and developed the Theory of Continental Drift. Continental drift is the theory that continents can drift apart from one other and have done so in the past. Wegner's theory also explained why fossils of the same plant and animal species are found on both sides of the Atlantic Ocean. In addition similar types of rock and evidence of the same ancient climatic conditions are found on several continents.
Wegner hypothesized that all the separate continents of today were once joined in a single landmass that he called Pangaea.
Explanation:
As a neutral lithium atom contains 3 protons and its elemental charge is given as
. Hence, we will calculate its number of moles as follows.
Moles = 
= 
= 100 mol
According to mole concept, there are
atoms present in 1 mole. So, in 100 mol we will calculate the number of atoms as follows.
No. of atoms = 
=
atoms
Since, it is given that charge on 1 atom is as follows.

= 
Therefore, charge present on
atoms will be calculated as follows.

Thus, we can conclude that a positive charge of
is in 0.7 kg of lithium.