Answer:
Forming a problem requires the scientist to use creativity to imagine new solutions.
Explanation:
Albert Einstein remains a critically prominent figure who conducted remarkable, ground-breaking research that not only formed the foundations of modern physics but also strongly affected the scientific world. It is difficult to teach imagination but it can be harnessed and accepted. Nothing incites our imaginative impulses we love more than the prospect of immediate creative inspiration. And creativity hits its full potential when paired with the experience, insights, and skills people gained by questioning the real-life problems.
Answer:
Fluid power systems perform work by a pressurized fluid bearing directly on a piston in a cylinder or in a fluid motor. A fluid cylinder produces a force resulting in linear motion, whereas a fluid motor produces torque resulting in rotary motion. Within a fluid power system, cylinders and motors (also called actuators) do the desired work. Control components such as valves regulate the system.
Answer:
Explanation:
mass % of C = 0.27/0.45*100 = 60%
mass % of H = 0.02/0.45*100 = 4.4%
mass % of O = 0.16/0.45*100 = 35.6%
Total = 60%+4.4%+ 35.6% = 100%
Answer:
An ion channel, more specifically a calcium channel.
Explanation:
The electrical activity of the cells is regulated by ion channels. Calcium channels, also referred as the voltage-gated calcium channels constitute one group of a superfamily of ion channels. A change in voltage across the membrane or small molecules triggers calcium channels to open, allowing calcium to flow into the cell. Inside the cell, calcium acts as a second messenger, it binds to calcium sensitive proteins to induce different responses and support several functions such as muscle contraction, hormone and neurotransmitter secretion, gene regulation, activation of other ion channels, control of action potentials, cell survival, etc.