Answer:

Step-by-step explanation:
The water density is approximately 1 gram per cubic centimeter, which means that 1 gram of water occupies a volume of a cubic centimeter. Hence, 2.179 grams occupies a volume of 2.179 cubic centimeters.
Let assume volume occupied by the water has a cube-like shape, whose side has the following measure:
![l = \sqrt[3]{2.179\,m^{3}}](https://tex.z-dn.net/?f=l%20%3D%20%5Csqrt%5B3%5D%7B2.179%5C%2Cm%5E%7B3%7D%7D)

Answer:
y-6=3/2(x+8)
Step-by-step explanation:
so the point slope form is y-y₁=m(x-x₁)
so enter the points (-8, 6)
y-6= 3/2(x-(-8))
y-6=3/2(x+8)
Answer:
see explanation
Step-by-step explanation:
substitute the values of x in the table into g(x)
Using the rule of exponents
= 
g(- 2) =
=
= 
g(- 1) =
= 
g(0) =
= 1
g(1) =
= 4
g(2) = 4² = 16
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given set of values

STEP 2: Write the formula for calculating the Standard deviation of a set of numbers
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ where\text{ }x_i\text{ are data points,} \\ \bar{x}\text{ is the mean} \\ \text{n is the number of values in the data set} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20where%5Ctext%7B%20%7Dx_i%5Ctext%7B%20are%20data%20points%2C%7D%20%5C%5C%20%5Cbar%7Bx%7D%5Ctext%7B%20is%20the%20mean%7D%20%5C%5C%20%5Ctext%7Bn%20is%20the%20number%20of%20values%20in%20the%20data%20set%7D%20%5Cend%7Bgathered%7D)
STEP 3: Calculate the mean

STEP 4: Calculate the Standard deviation
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ \sum ^{}_{}(x_i-\bar{x})^2\Rightarrow\text{Sum of squares of differences} \\ \Rightarrow10332.7225+657.9225+18591.3225+982.8225+2740.52251+9731.8225+3522.4225+18319.6225+2878.3225 \\ +8163.1225+1417.5225+3925.0225+1321.3225+386.1225+5677.6225+2953.9225+3800.7225 \\ +3209.2225+2565.4225+10537.0225 \\ \text{Sum}\Rightarrow108974.0275 \\ \\ S\tan dard\text{ deviation}=\sqrt[]{\frac{111714.55}{20-1}}=\sqrt[]{\frac{111714.55}{19}} \\ \Rightarrow\sqrt[]{5879.713158}=76.67928767 \\ \\ S\tan dard\text{ deviation}\approx76.68 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20%5Csum%20%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%5CRightarrow%5Ctext%7BSum%20of%20squares%20of%20differences%7D%20%5C%5C%20%5CRightarrow10332.7225%2B657.9225%2B18591.3225%2B982.8225%2B2740.52251%2B9731.8225%2B3522.4225%2B18319.6225%2B2878.3225%20%5C%5C%20%2B8163.1225%2B1417.5225%2B3925.0225%2B1321.3225%2B386.1225%2B5677.6225%2B2953.9225%2B3800.7225%20%5C%5C%20%2B3209.2225%2B2565.4225%2B10537.0225%20%5C%5C%20%5Ctext%7BSum%7D%5CRightarrow108974.0275%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B20-1%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B19%7D%7D%20%5C%5C%20%5CRightarrow%5Csqrt%5B%5D%7B5879.713158%7D%3D76.67928767%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%5Capprox76.68%20%5Cend%7Bgathered%7D)
Hence, the standard deviation of the given set of numbers is approximately 76.68 to 2 decimal places.
STEP 5: Calculate the First and third quartile

STEP 6: Find the Interquartile Range

Hence, the interquartile range of the data is 116