Answer:
C. Constant
Explanation:
The total energy of the cannonball remains constant as it travels through the air.
Answer:
A. α = 94.4 rad/s
B. a = 28.32 m/s
C. N = 34N
D. α = 94.4 rad/s
a = 28.32 m/s
N = 44.4 N
Explanation:
part A:
using:
∑T = Iα
where T is the torque, I is the moment of inertia and α is the angular momentum.
firt we will find the moment of inertia I as:
I = 
Where M is the mass and R is the radius of the wheel, then:
I = 
I = 0.36 kg*m^2
Replacing on the initial equation and solving for α, we get::
∑T = Iα
Fr = Iα
34 N = 0.36α
α = 94.4 rad/s
part B
we need to use this equation :
a = αr
where a is the aceleration of the cord that has already been pulled off and r is the radius of the wheel, so replacing values, we get:
a = (94.4)(0.3 m)
a = 28.32 m/s
part C
Using the laws of newton, we know that:
N = T
where N is the force that the axle exerts on the wheel part and T is the tension of the cord
so:
N = 34N
part D
The anly answer that change is the answer of the part D, so, aplying laws of newton, it would be:
-Mg + N +T = 0
Then, solving for N, we get:
N = -T+Mg
N = -34 + (8 kg)(9.8)
N = 44.4 N
Answer:
The acceleration of the box is 2.
Explanation:
According to Newton's second law of motion, the acceleration of any object will be directly proportional to the net unbalanced force acting on the object and inversely proportional to the mass of the object.
Net force = Mass × Acceleration
So 
Since in this case, the box is experiencing a force from east of magnitude 27 N and resisting force of about 17 N from west. So the net force will be the difference of acting and reacting force.
Net force = 27-17 = 10 N.
Thus, 
So 2
is the acceleration of the box. Thus the magnitude of acceleration of the box is 2.
1) In the initial situation, the total mechanical energy of the system is given only by the kinetic energy of the ball that is moving with speed v:

where

is the mass of the ball.
In the final situation, where the system (ball+pendulum) rises a vertical distance of h=0.145 m, the system is stationary (v=0) so the total mechanical energy of the system is the gravitational potential energy:

where

is the mass of the pendulum.
For the law of conservation of energy,

, so we can find the initial speed v of the ball:


2) The kinetic energy lost in the collision is the initial kinetic energy of the ball:
Answer:
1.53m
Explanation:
Given parameters:
Mass of box = 3kg
Gravitational potential energy = 45J
Unknown
Height of the box = ?
Solution:
To solve this problem;
Gravitational potential energy = mgh
m is the mass
g is the acceleration due to gravity
h is the height
45 = 3 x 9.8 x h
h = 1.53m