This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
Melting, of course. Just as how an ice cube melts to water.
Explanation:
The magnitude of a vector v can be found using Pythagorean's theorem.
||v|| = √(vₓ² + vᵧ²)
||v|| = √((-309)² + (187)²)
||v|| ≈ 361
You can find the angle of a vector using trigonometry.
tan θ = vᵧ / vₓ
tan θ = 187 / -309
θ ≈ 149° or θ ≈ 329°
vₓ is negative and vᵧ is positive, so θ must be in the second quadrant. Therefore, θ ≈ 149°.
Rocks and sediments I believe
Answer:
3.46 A
Explanation:
The force (F) exerted on a wire of a particular length (L) carrying current (I) through a magnetic field (B) at an angle (θ) to the magnetic field is given as
F = (B)(I)(L) sin θ
F = 3.13 N
B = 0.360 T
I = ?
L = 2.50 m
θ = 79°
3.13 = (0.360 × I × 2.5 × sin 79°)
0.8835 I = 3.13
I = 3.54 A
But this is the resultant current in this magnetic field.
Since the two wires are conducting current in opposite directions,
Resultant current = 7 - (current in the other wire)
Current in the other wire = 7 - 3.54 = 3.46 A