Answer:
One when it enters the glass slab from air and second time when it enters the air through glass slab. When light rays travelling through air enters glass slab, they get refracted and bend towards the normal. Now the direction of refracted ray changes again when it comes out of the glass slab into air.
Thermal energy gives the particles of the substance kinetic energy because temperature is an average measure of kinetic enegy of the particle. If we give them thermal energy the particle will move faster, gaining enough energy to escape and become free. For example, from solid to liquid, the particles would espace their fixed position and be free to move as a liquid.
Answer:
Q = 1057.5 [cal]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat energy [cal]
Cp = specific heat = 0.47 [cal/g*°C]
T_final = final temperature = 32 [°C]
T_initial = initial temperature = 27 [°C]
m = mass of the substance = 450 [g]
Now replacing:
![Q=450*0.47*(32-27)\\Q=1057.5[cal]](https://tex.z-dn.net/?f=Q%3D450%2A0.47%2A%2832-27%29%5C%5CQ%3D1057.5%5Bcal%5D)
Answer:
9.82 ×
Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = 
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×
Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = 
= 
= 
= 9.8222 × 
The wavelength of the object is 9.82 ×
Hz.
Answer:
684J
Explanation:
So basically the formula for gravitational potential energy is Mass X Gravity X height. That is G.p.e = mgh
We don't have the mass but since we have the height, we multiply directly with the height since the quantity of weight is already given.
so G.p.e = 360 X 1.9 = 684J
Note that; The answer is in joules because g.p.e is work done.
Hope that was helpful!!