Answer:
Loss, 
Explanation:
Given that,
Mass of particle 1, 
Mass of particle 2, 
Speed of particle 1, 
Speed of particle 2, 
To find,
The magnitude of the loss in kinetic energy after the collision.
Solve,
Two particles stick together in case of inelastic collision. Due to this, some of the kinetic energy gets lost.
Applying the conservation of momentum to find the speed of two particles after the collision.



V = 6.71 m/s
Initial kinetic energy before the collision,



Final kinetic energy after the collision,



Lost in kinetic energy,



Therefore, the magnitude of the loss in kinetic energy after the collision is 10.63 Joules.
When an object is free-falling, no other force is acting upon it but the gravitational force. Because of this, the equations of motion are simplified. We can determine first the initial velocity:
v = √2gy = √2(9.81)(4.9) = 9.805 m/s
Then, we use this to the equation below:
y = vt + 1/2*at²
y = (9.805)(0.5) + 1/2(9.81)(0.5)²
y = 6.13 m
Hook up more power or you can add car battery’s to it
all solids are made with liquid and liquids are all the same so yes
Newton's<span> First </span>Law of Motion<span>: I. Every object in a state of uniform </span>motion<span> tends to remain in that state of </span>motion<span> unless an external force is applied to it. This we recognize as essentially Galileo's concept of inertia, and this is often termed simply the "</span>Law<span> of Inertia".</span>