Answer:
Zero.
Explanation:
An adiabatic process is one in which there is no exchange of heat energy. Therefore, in an adiabatic process, heat is neither added to the system not it is removed from the system.
The work done by the gas on the environment is 20 J. This energy is equal to the change in internal energy for an adiabatic process.
Therefore, for an ideal gas to undergo an adiabatic process in which it expands and does 20 J of work on its environment, the heat exchange is zero.
Answer:


Explanation:
Electrostatic Force
It's the force that appears between two electrical charges q1 q2 when they are placed at a certain distance d. The force can be computed by using the Coulomb's law:

We have an arrangement of 4 charges as shown in the image below. We need to calculate the total force exerted on the charge 2Q by the other 3 charges. The free body diagram is also shown in the second image provided. The total force on 2Q is the vectorial sum of F1, F2, and F3. All the forces are repulsive, since all the charges have the same sign. Let's compute each force as follows:


The distance between 3Q and 2Q is the diagonal of the rectagle of length l:

The force F3 is

Each force must be expressed as vectors. F1 is pointed to the right direction, thus its vertical components is zero

F2 is pointed upwards and its horizontal component is zero

F3 has two components because it forms an angle of 45° respect to the horizontal, thus


Now we compute the total force




Now we compute the magnitude

The direction of the total force is given by


The magnitude of the average force exerted on the ball by the wall is calculated below.
The average force exerted by the ball on the wall is 3 N
Explanation:
Given:
mass of the ball (m)=0.10 kg
speed (v) =3.0 m/s
time taken(t) =0.01 seconds
To calculate:
Average force(F) exerted by ball on the wall
We know;
F=(m×v)÷t
F=(0.10×3.0)÷0.01
<u><em>F=3 N</em></u>
Therefore the average force exerted by the ball on the wall is 3 N
Answer:
The induced current will be counterclockwise.
Explanation:
Magnetic field lines always begin on north poles and end on south poles. This means that there is an increase of magnetic field lines going into the plane of the loop. The induced current will be counterclockwise to oppose this change.
Answer:
reddish-orrange
Explanation:
please mark me as brainliest