In a combustion of a hydrocarbon compound, 2 reactions are happening per element:
C + O₂ → CO₂
2 H + 1/2 O₂ → H₂O
Thus, we can determine the amount of C and H from the masses of CO₂ and H₂O produced, respectively.
1.) Compute for the amount of C in the compound. The data you need to know are the following:
Molar mass of C = 12 g/mol
Molar mass of CO₂ = 44 g/mol
Solution:
0.5008 g CO₂*(1 mol CO₂/ 44 g)*(1 mol C/1 mol CO₂) = 0.01138 mol C
0.01138 mol C*(12 g/mol) = 0.13658 g C
Compute for the amount of H in the compound. The data you need to know are the following:
Molar mass of H = 1 g/mol
Molar mass of H₂O = 18 g/mol
Solution:
0.1282 g H₂O*(1 mol H₂O/ 18 g)*(2 mol H/1 mol H₂O) = 0.014244 mol H
0.014244 mol H*(1 g/mol) = 0.014244 g H
The percent composition of pure hydrocarbon would be:
Percent composition = (Mass of C + Mass of H)/(Mass of sample) * 100
Percent composition = (0.13658 g + 0.014244 g)/(<span>0.1510 g) * 100
</span>Percent composition = 99.88%
2. The empirical formula is determined by finding the ratio of the elements. From #1, the amounts of moles is:
Amount of C = 0.01138 mol
Amount of H = 0.014244 mol
Divide the least number between the two to each of their individual amounts:
C = 0.01138/0.01138 = 1
H = 0.014244/0.01138 = 1.25
The ratio should be a whole number. So, you multiple 4 to each of the ratios:
C = 1*4 = 4
H = 1.25*4 = 5
Thus, the empirical formula of the hydrocarbon is C₄H₅.
3. The molar mass of the empirical formula is
Molar mass = 4(12 g/mol) + 5(1 g/mol) = 53 g/mol
Divide this from the given molecular weight of 106 g/mol
106 g/mol / 53 g/mol = 2
Thus, you need to multiply 2 to the subscripts of the empirical formula.
Molecular Formula = C₈H₁₀
Answer:
1. Dmitri Mendeleev
2. Johann Dobhereiner
3. John Newlands
4. Henry Moseley
If you find this helpful please give me Brainliest award
N=6.98*10²⁴
Nₐ=6.022*10²³ mol⁻¹
n(Mg)=N/Nₐ
m(Mg)=n(Mg)M(Mg)=M(Mg)N/Nₐ
m(Mg)=24.3g/mol*6.98*10²⁴/(6.022*10²³mol⁻¹)=281.7 g
H₃O⁺ = ×
OH = ×
pH = 2.22
pOH = 11.78
<h3>What is pH?</h3>
The term pH, which originally stood for "potential of hydrogen" (or "power of hydrogen"), is used in chemistry to describe how acidic or basic an aqueous solution is. Lower pH values are summarized for acidic solutions (solutions with higher H+ ion concentrations) than for basic or alkaline solutions.
The pH scale is inversely indicates to the concentration of hydrogen ions in the solution and is logarithmic.
⇒pH = -log()
Acidic solutions are those with a pH below 7, and basic solutions are those with a pH above 7, at a temperature of 25 °C (77 °F). At this temperature, solutions with a pH of 7 are neutral (e.g. pure water). The pH neutrality relies on temperature, falling below 7 if the temperature rises above 25 °C.
Learn more about pH
brainly.com/question/12609985
#SPJ4