Answer:
Required number of moles of ideal gas is 0.877 moles.
Explanation:
Pressure (P) = 0.850 atm
Temperature (T) = 295 K
Volume (V) = 25 ltr
Universal gas constant (R) = 0.0821
no of moles (n) = ?
we have the ideal gas equation as:
PV= nRT
or, 0.850× 25 = n × 0.0821 × 295
or, n = 0.877 moles
Hence the required number of moles of an ideal gas is 0.877 moles.
Answer:
The average kinetic energy of the system has increased as a result of the temperature increasing.
Explanation:
Assuming this is a gas based on the framing.
The molecules of a gas span a distribution of speeds, and the average kinetic energy of the molecules is directly proportional to the absolute temperature of the sample. KEavg is proportional to T.
This can be further studied until the Kinetic-Molecular Theory.
Answer:
a. 174 mL
Explanation:
Let's consider the following reaction.
2 KI(aq) + Pb(NO₃)₂(aq) → 2 KNO₃(aq) + PbI₂(s)
We have 155.0 mL of a 0.112 M lead(II) nitrate solution. The moles of Pb(NO₃)₂ are:
0.1550 L × 0.112 mol/L = 0.0174 mol
The molar ratio of KI to Pb(NO₃)₂ is 2:1. The moles of KI are:
2 × 0.0174 mol = 0.0348 mol
The volume of a 0.200 M KI solution that contains 0.0348 moles is:
0.0348 mol × (1 L / 0.200 mol) = 0.174 L = 174 mL
Explanation:
By losing or gaining electrons from its outermost orbit