Answer:
<h2>2.49 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>2.49 g/cm³</h3>
Hope this helps you
Answer:
a. 113 min
Explanation:
Considering the equilibrium:-
2N₂O₅ ⇔ 4NO₂ + O₂
At t = 0 125 kPa
At t = teq 125 - 2x 4x x
Thus, total pressure = 125 - 2x + 4x + x = 125 - 3x
125 - 3x = 176 kPa
x = 17 kPa
Remaining pressure of N₂O₅ = 125 - 2*17 kPa = 91 kPa
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k =
min⁻¹
Initial concentration
= 125 kPa
Final concentration
= 91 kPa
Time = ?
Applying in the above equation, we get that:-

Answer:
it's used by some sea shores for heat since the ocean takes time to cool down
it's used for salt
it's used to keep sea animals and certain endangered plant species
Answer:
The big energy change when water freezes is in the potential energy of interactions between the water molecules.
Explanation:
I am not to sure if this is correct, but I hope it helps in some way.
Answer:
Yes.
Explanation:
Yes, this difference of readings will definitely affect the results of the experiment as well as the E values because the readings taken by both students are different from one another. There is a fault in one of the thermometer because both shows different readings of temperature of the same solution. This will affect the overall experiment and due to this error, we are unable to tell that which one reading is correct so the answer is uncertain or unsure.