Answer:N
2
+ 3
H
2
-----> 2N
H
3
Explanation:
N
2
+
H
2
-----> N
H
3
Let us balance this equation by counting the number of atoms on both sides of the arrow.
N
2
+
H
2
-----> N
H
3
N=2 , H=2 N=1, H=3
To balance the number of N atom on Right Hand Side (RHS) , I will add one molecule of N
H
3
on RHS
N
2
+
H
2
-----> 2N
H
3
N=2 , H=2 N=2 , H= 6
To balance the number of H atoms on Left Hand Side (LHS) , I will add two molecules of
H
2
on LHS
N
2
+ 3
H
2
-----> 2N
H
3
N=2 , H=6 N=2 , H= 6
Answer link
Related questions
What is the chemical equation for photosynthesis?
How can I know the relative number of grams of each substance used or produced with chemical equations?
How can I know the relative number of moles of each substance with chemical equations?
How do chemical equations illustrate that atoms are conserved?
How can I know the formula of the reactants and products with chemical equations?
How can I balance this chemical equations? Potassium metal and chlorine gas combine to form...
How many types of chemical reactions exist?
How can a chemical equation be made more informative?
How can I balance this equation? ___ AlBr3 + ____ K2SO4 ---> ____ KBr + ____ Al2(SO4)3
How can I balance this equation? ____ Pb(OH)2 + ____ HCl ---> ____ H2O + ____ PbCl2
Answer:
<h3>KBr + I- ---------> KI + Br-</h3>
Explanation:
Single Displacement reaction is a chemical Reaction in which one element in the salt is replaced with another element
for example,
A-B + C -------> A-C + B
electropositive replaces only electropositive elements from compound. same is true for electronegative element
in first reaction I being electro negative replaces Br from KBr so this is a single displacement reaction
<span>I did some investigation and summarized the process and made a clearer explanation so those who are confused can imagine the process better :) A scientific theory attempts to explain and describe why things happen. Hypotheses are formed and experiments are done to validate or toss the hypothesis based on the data collected. The Atomic Theory has gone through lots of refining as a scientific theory. For instance, William Crookes conduced an experiment with cathode ray tubes powered by electricity that glowed when powered. Crookes placed an object in between the positive and negative electrode and concluded that the shadow made on the positive side was small particles of matter traveling from the negative side. But more evidence was needed so, later on, J.J. Thomson continued Crookes experiment. He tested what would happen if a negative or positive charged rod was placed along the ray tubes and if it would differ if a different element was used as the negative electrode. Thomson found out that the beam had negatively charged particles and that even if the negative electrode is substituted, the glow is still present, meaning that all elements also had the small negative particles. These particles(now known as electrons) were smaller than the atom and were added to the model of the atom dispersed throughout the neutrally charged atom inside its positive sphere. Now came along Rutherford hoping to support Thomsons model by firing positively charged particles at a thin gold foil thinking it would go straight through the foil, but instead it evenly distributed as they went through the foil, concluding that atoms have a small, dense nucleus(containing positive protons and most of the mass of the atom) that deflected the particles passing through. This was a drastic change in the model now knowing that 1 proton has 2000 times the mass of an electron, but its positive charge cancels the negative electron. After WW1, Chadwick and others were seeing that sometimes the mass of the atom was greater than the mass of the protons and the number of protons was less than the mass of the atom. So it was thought that there were extra electrons and protons adding mass in the nucleus but cancelling their charges, but Rutherford proposed a particle with mass but no charge and called it a neutron; made of paired protons and electrons. But scientists kept studying atoms since there was no evidence of the neutron. Chadwick repeated these experiments though, in hopes to find the neutron and succeeded in 1932, finding it in the nucleus with a close mass to the proton. Thanks to these experiments for refining a scientific theory, we now have a clearer model of the atom.</span>
Answer:
A
Explanation:
The purpose of the periodic table was to organize elements as they were discovered into periods and groups, according to their properties. It was not just a naming of elements, as a list.
The element Sodium (Na) has 11 protons and 1 valence electron.