Answer:
It takes you 32.27 seconds to travel 121 m using the speed ramp
Explanation:
<em>Lets explain how to solve the problem</em>
- The speed ramp has a length of 121 m and is moving at a speed of
2.2 m/s relative to the ground
- That means the speed of the ramp is 2.2 m/s
- You can cover the same distance in 78 seconds when walking on
the ground
<em>Lets find your speed on the ground</em>
Speed = Distance ÷ Time
The distance is 121 meters
The time is 78 seconds
Your speed on the ground = 121 ÷ 78 = 1.55 m/s
If you walk at the same rate with respect to the speed ramp that
you walk on the ground
That means you walk with speed 1.55 m/s and the ramp moves by
speed 2.2 m/s
So your speed using the ramp = 2.2 + 1.55 = 3.75 m/s
Now we want to find the time you will take to travel 121 meters using
the speed ramp
Time = Distance ÷ speed
Distance = 121 meters
Speed 3.75 m/s
Time = 121 ÷ 3.75 = 32.27 seconds
It takes you 32.27 seconds to travel 121 m using the speed ramp
Answer:

Explanation:
Given the absence of non-conservative force, the motion of the coin is modelled after the Principle of Energy Conservation solely.



The moment of inertia of the coin is:

After some algebraic handling, an expression for the maximum vertical height is derived:




Additional Information:
I couldn't get your question very clearly. In order to solve the question, I will define moment of inertia, state the formula and factors that the moment of inertia of a body depends and does not depend on.
Answer:
<u>Moment of inertia depends on;</u>
1. Mass of the body
2. Axis of rotation and
3. Distribution of the body
<u>Moment of inertia does not depend on;</u>
1. Angular velocity of the body.
Explanation:
The moment of inertia is defined as a quantity that determines the torque needed for a desired angular acceleration or a property of a body due to which it resists angular acceleration about a rotational axis.
Moment of Inertia, I = ∑mr²
Where,
I is the moment of Inertia
m is the mass
r is the distance from the axis of the rotation
The moment of inertia of a body depends on distribution of body, axis of rotation and mass of the body. However, the moment of Inertia of a body is not dependent on angular velocity of the body.
1. The stratosphere is above the troposphere. This layer of the atmosphere is where planes fly. At the top of the stratosphere, there is a ozone layer.
2. The mesosphere is above the stratosphere. Temperatures drastically drop in the mesosphere. It is the middle layer of the atmosphere.
3. Here are the layers of the atmosphere:
- Troposphere
- Stratosphere
- Mesosphere
- Thermosphere
- Exosphere
Hope this helps you!