Answer: Option 3.
Explanation:
Formula for kinetic energy is
K.E = (1 / 2) * (m * v ^ 2)
Assuming mass to be constant,
We can see that K.E is proportional to v^2.
It means that when you substitute the value of velocity in v, kinetic energy increases with v^2.
Option 1 and 2 are eliminated because the relationship between kinetic energy and velocity in the graph is shown as linear. We already know from formula that the relationship is not linear.
Option 4 is incorrect because kinetic energy must be zero when velocity is zero. This graph shows kinetic energy is becoming infinite as velocity tends to 0.
So option 3 is correct answer.
Hello!
I'm unfamiliar with the book you are reading,
However, based on textual evidence, I think your answer relies somewhere in answer choice A or D.
I hope this helps!
Carbon dioxide
Helium
Argon
Hydrogen
Explanation:
Calcium carbonate is a molecule that contains one atom of calcium, one atom of carbon, and three atoms of oxygen.
Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/) ......................a
put here value (I/) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km